Геометрический смысл производной. Уравнение касательной к графику функции. Задание 7. Уравнение касательной к графику функции производная


Геометрический смысл производной. Уравнение касательной к графику функции. Задание 7

Геометрический смысл производной. Уравнение касательной к графику функции. Задание 7.

 

Вспомним определение производной:

Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:

Исходя из этого определения, рассмотрим, каким образом производная функции  связана с графиком этой функции.

Посмотрите ВИДЕОУРОК, в котором я подробно объясняю, в чем заключается геометрический смысл производной, и как выводится уравнение касательной. А затем мы рассмотрим решение задач из Открытого банка заданий для подготовки к ЕГЭ по математике.

 

 

Итак.

Геометрический смысл производной.

Тангенс угла наклона касательной (угловой коэффициент наклона касательной), проведенной к графику функции   в точке    равен производной функции в этой точке:

Заметим, что угол  - это угол между прямой и положительным направлением оси ОХ:

Уравнение касательной к графику функции  в точке  имеет вид:

В этом уравнении:

- абсцисса точки касания,

- значение функции  в точке касания,

- значение производной функции  в точке касания.

Приведем несколько примеров решения задач из Открытого банка заданий для подготовки к ЕГЭ по математике, в которых используется знание геометрического смысла производной.

Пример 1. Задание В8 (№ 27504) На рисунке изображены график функции   и касательная к нему в точке с абcцисcой  . Найдите значение производной функции  в точке  .

Значение производной функции  в точке  равно тангенсу угла между касательной и положительным направлением оси ОХ. Чтобы его найти, выделим прямоугольный треугольник, гипотенуза которого лежит на касательной, а катеты параллельны осям координат. Обозначим точки с целыми координатами буквами  А и В - эти точки выделены на касательной:

Проведем через точку А прямую параллельно оси ОХ, а через точку В - параллельно оси OY. Получим прямоугольный треугольник ABC:

Угол А  треугольника  АВС равен углу между касательной и положительным направлением оси ОХ.

Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему.

Длины катетов считаем по количеству клеточек.

Ответ: 0,25

Пример 2. Задание В8 (№ 27506) На рисунке изображены график функции   и касательная к нему в точке с абцисоой  . Найдите значение производной функции  в точке .

Эта задача очень похожа на предыдущую, за исключением того, что здесь касательная  наклонена влево, и угол между касательной и положительным направлением оси ОХ расположен так:

Построим, как предыдущей задаче, прямоугольный треугольник АВС:

Угол А треугольника ABC и угол - смежные, то есть их сумма равна 180 градусов. Значит,

Запомните, если прямая наклонена влево, то коэффициент наклона прямой отрицателен.

Ответ: -0,25

Пример 3. Задание В8 (№ 40129)  На рисунке изображен график функции . Прямая, проходящая через начало координат, касается графика этой функции в точке с абсцссой 8. Найдите значение производной функции в точке .

Соединим  отрезком точку начала координат с точкой касания:

Производная функции в точке касания равна тангенсу угла  между касательной и положительным направлением оси ОХ:

Чтобы найти тангенс , рассмотрим прямоугольный треугольник АОВ:

 

Ответ: 1,25

И.В. Фельдман, репетитор по математике.

ege-ok.ru

10 класс. Алгебра. Производная. Применение производной к исследованию функции. - Уравнение касательной к графику функции.

Комментарии преподавателя

Урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции

На преды­ду­щих за­ня­ти­ях были рас­смот­ре­ны за­да­чи на тех­ни­ку диф­фе­рен­ци­ро­ва­ния. Это очень важ­ные за­да­чи, и на­хож­де­ние про­из­вод­ных необ­хо­ди­мо в раз­ных за­да­чах, в том числе и в со­став­ле­нии урав­не­ния ка­са­тель­ной.

 По­стро­им кри­вую  (см. рис.1).

 

Рис. 1. Гра­фик функ­ции .

За­фик­си­ру­ем точку . Если , то зна­че­ние функ­ции равно . Зна­чит, имеем точку с ко­ор­ди­на­та­ми (.

За­да­ча: со­ста­вить урав­не­ние ка­са­тель­ной. Более стро­гая фор­му­ли­ров­ка – на­пи­сать урав­не­ние ка­са­тель­ной к функ­ции  в точке с абс­цис­сой , в ко­то­рой  - су­ще­ству­ет.

Урав­не­ние ка­са­тель­ной – это пря­мая,  ко­то­рая за­да­ет­ся фор­му­лой  

Любая пря­мая, в том числе и ка­са­тель­ная, опре­де­ля­ет­ся двумя чис­ла­ми: и . Ис­хо­дя из гео­мет­ри­че­ско­го смыс­ла про­из­вод­ной  (тан­генс угла на­кло­на ка­са­тель­ной) – это есть уг­ло­вой ко­эф­фи­ци­ент .

Па­ра­метр  най­дем из усло­вия, что ка­са­тель­ная про­хо­дит через точку (, то есть  . 

 .

Стало быть  .

За­пи­шем урав­не­ние ка­са­тель­ной

.

Или, .

По­лу­чи­ли урав­не­ние ка­са­тель­ной к кри­вой  в точке с абс­цис­сой .

Смысл каж­до­го эле­мен­та, ко­то­рый вхо­дит в урав­не­ние ка­са­тель­ной.

1) ( – точка ка­са­ния ка­са­тель­ной и гра­фи­ка функ­ции.

2)  - уг­ло­вой ко­эф­фи­ци­ент ка­са­тель­ной к гра­фи­ку функ­ции.

3)  – про­из­воль­ная точка на ка­са­тель­ной.

Очень много задач, когда за­да­на точка, ко­то­рая не лежит на гра­фи­ке функ­ции, и через нее надо про­ве­сти ка­са­тель­ную к дан­ной функ­ции. Надо четко по­ни­мать, что   – это про­из­воль­ная точка на ка­са­тель­ной.

Итак, по­лу­чи­ли урав­не­ние ка­са­тель­ной, про­ана­ли­зи­ро­ва­ли смысл каж­до­го эле­мен­та этой ка­са­тель­ной, и те­перь при­ве­дем при­мер, и на нем из­ло­жим ме­то­ди­ку по­стро­е­ния ка­са­тель­ной.

За­да­ча.

К кри­вой  в точке с абс­цис­сой  про­ве­сти ка­са­тель­ную. Про­ил­лю­стри­ру­ем поиск ка­са­тель­ной на ри­сун­ке (см. рис.2).

 

Рис. 2. Ка­са­тель­ная к гра­фи­ку функ­ции .

За­фик­си­ру­ем точку . Зна­че­ние функ­ции в этой точке  равно 1.

Ал­го­ритм со­став­ле­ния урав­не­ния ка­са­тель­ной к гра­фи­ку функ­ции:

1)  Найти  и точку ка­са­ния. 

 - дано.Точка ка­са­ния: (;.

2) Найти про­из­вод­ную в любой точке .

.

3) Найти зна­че­ние про­из­вод­ной в точке с абс­цис­сой .

 .

4) Вы­пи­сать и про­ана­ли­зи­ро­вать урав­не­ние ка­са­тель­ной.

.

Упро­ща­ем и по­лу­ча­ем:  .

Ответ: .

За­да­ча 1.

Пусть дано урав­не­ние ка­са­тель­ной 

www.kursoteka.ru

[Зачет 85] Определение производной функции в точке и на множестве. Геометрический смысл производной. Уравнения касательной и нормали к графику функции в точке.

Определение производной функции в точке и на множестве.       ОПРЕДЕЛЕНИЕ 1. Производной функции    в точке  называется предел отношения приращения функции в этой точке к приращению аргумента ,  при (если этот предел существует и конечен), т.е. . Обозначают: .

Понятие предела последовательности непосредственно связано с понятием предельной точки (множества): если у множества есть предельная точка, то существует последовательность элементов данного множества, сходящаяся к данной точке.

Пусть дано топологическое пространство  и последовательность  Тогда, если существует элемент  такой, что , где  — открытое множество, содержащее , то он называется пределом последовательности . Если пространство является метрическим, то предел можно определить с помощью метрики: если существует элемент  такой, что , где  — метрика, то  называется пределом .

Геометрический смысл производной. 

Геометрический смысл производной

Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

Рассмотрим график функции y = f ( x ):

производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке.

В этом и состоит геометрический смысл производной.

Уравнения касательной и нормали к графику функции в точке.

Уравнение касательной

Пусть функция задается уравнением y=f(x), нужно написать уравнение касательной в точке x0. Из определения производной: 

y/(x)=limΔx→0ΔxΔy

Δy=f(x+Δx)−f(x). 

Уравнение касательной к графику функции: y=kx+b (k,b=const). Из геометрического смысла производной: f/(x0)=tgα=k 

Т.к. x0 и f(x0)∈  прямой, то уравнение касательной записывается в виде: y−f(x0)=f/(x0)(x−x0) , или

y=f/(x0)·x+f(x0)−f/(x0)·x0. 

Уравнение нормали

Нормаль -- это перпендикуляр к касательной (см. рисунок). Исходя из этого:

tgβ=tg(2π−α)=ctgα=1tgα=1f/(x0)

Т.к. угол наклона нормали -- это угол β1, то имеем:

tgβ1=tg(π−β)=−tgβ=−1f/(x).

Точка (x0,f(x0))∈  нормали, уравнение примет вид:

y−f(x0)=−1f/(x0)(x−x0).

Примеры. Напишите уравнение касательной к графику функции y=0,5x^2–3x+1, проходящей под углом 45° к прямой y=0. Смотреть решение... Дана функция y = x^3. Составить уравнение касательной к графику этой функции в точке x0=2. Смотреть решение... Составить уравнение касательной к графику функции f (x) = 2sin x + 5 в точке x0 = π/2. Смотреть решение...

fizmatinf.blogspot.com

Геометрический смысл производной. Уравнение касательной к графику функции.

Понятие производной

Производной функцией y=f(x) в данной точке х наз. предел отношения приращения функции к соответствующему приращению аргумента,при условии что αх стремится к нулю (треугольничек Х стрелочка 0)

 

Геометрический смысл производной. Уравнение касательной к графику функции.

Геом. смысл производной

Производная ф-ции в данной точке равна тангенсу угла наклона касательной проведенной к графику ф-ции в этой точке

(рисунок есть)

Ур-ние касательной у графику ф-ции

у' =tgα

 

Физический (механический) смысл производной

Скорость материальной точки в данный момент времени равна производной пути по времени

V = S't = dS/dt

(тока V с закорючками, ну типа скорость)

 

Производная суммы, произведения, степени, частного.

§ Производная от суммы или разности конечного числа ф-ции равна сумме или разности производных от этой ф-ции

§ (U+V+W)' = U'+V'-W'

§ Производная произведения двух ф-ций вычесл. по формуле (U*V)' = U'*V+V'*U

§ Производная частного

§ (U/V)'= U'V-V'U/V2

 

Производная сложной функции

Y'x=Y'u*U'x

 

Производная показательной и логарифмической ф-ции

логарифмическая ф-ция

(log a x)' = 1/x ln a

(ln x)' = 1/x

показательная фц-ия

( a в степени х)' = a в степени х*ln a

(E в степени х)' = е в степени х

 

Производные тригонометрических ф-ций

1)

2)

3)

4)

 

Производные обратных тригонометрических ф-ций

1)

 

2)

3)

4)

Возрастание,убывание ф-ций.Исследование ф-ции на монотонность по I пр-ной

 

Возрастание и убывание функция y = f (x) называется возрастающей на отрезке [a, b], если для любой пары точек х и х', а ≤ х < х' ≤ b выполняется неравенство f (x) ≤ f (x'), и строго возрастающей — если выполняется неравенство f (x) < f (x'). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х2 строго возрастает на отрезке [0,1], а

строго убывает на этом отрезке. Возрастающие функции обозначаются f (x)↑, а убывающие f (x)↓. Для того чтобы дифференцируемая функция f (x) была возрастающей на отрезке [а, b], необходимо и достаточно, чтобы её производная f'(x) была неотрицательной на [а, b].

Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x) называется возрастающей в точке x0, если найдётся такой интервал (α, β), содержащий точку x0, что для любой точки х из (α, β), х> x0, выполняется неравенство f (x0) ≤ f (x), и для любой точки х из (α, β), х< x0, выполняется неравенство f (x) ≤ f (x0). Аналогично определяется строгое возрастание функции в точке x0. Если f'(x0) > 0, то функция f (x) строго возрастает в точке x0. Если f (x) возрастает в каждой точке интервала (a, b), то она возрастает на этом интервале.

 

План исследования ф-ции на экстремумы по 1-ой производной

1.находим D(y)

2.находим производную данной ф-ции

3.приравниваем полученную производную к 0 и вычесляем критические точки.

4.полученными точками разбиваем область опред. на интервалы и опред. знак производной в каждом интервале

5.если при переходе через критическую точку слева еаправо,производная меняет знак с +на-,то данная точка-max ф-ции,если с –на+, то точка- min ф-ции

6. находим значение ф-ции в экстремальных точках путем их подстановки в условие.

 

Полное исследование ф-ции

1)находят область определен.ф-ции

2)исследуют ф-цию на четность или нечетность

3)опред. точки пересечен. Графика ф-ции с осями координат(если возможно)

4)вычесл. Первую производную ф-ции

5)находят еритические точки и исследуют ф-цию на монотонность или экстремумы

6)находят вторую производную ф-ции

7)находят критич. точки второго рода и исследуют ф-цию на выпуклость/вогнутость и точки перегиба

8)используя рез-ты всех исследований соединяют получ. точки плавной кривой

 

Угол между векторами.

Квадрат вектора равен квадрату его модуля.

Понятие производной

Производной функцией y=f(x) в данной точке х наз. предел отношения приращения функции к соответствующему приращению аргумента,при условии что αх стремится к нулю (треугольничек Х стрелочка 0)

 

Геометрический смысл производной. Уравнение касательной к графику функции.

Геом. смысл производной

Производная ф-ции в данной точке равна тангенсу угла наклона касательной проведенной к графику ф-ции в этой точке

(рисунок есть)

Ур-ние касательной у графику ф-ции

у' =tgα

 

cyberpedia.su

10 класс. Алгебра. Производная. Применение производной к исследованию функции. - Уравнение касательной к графику функции.

Комментарии преподавателя

Урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции

На преды­ду­щих за­ня­ти­ях были рас­смот­ре­ны за­да­чи на тех­ни­ку диф­фе­рен­ци­ро­ва­ния. Это очень важ­ные за­да­чи, и на­хож­де­ние про­из­вод­ных необ­хо­ди­мо в раз­ных за­да­чах, в том числе и в со­став­ле­нии урав­не­ния ка­са­тель­ной.

 По­стро­им кри­вую  (см. рис.1).

 

Рис. 1. Гра­фик функ­ции .

За­фик­си­ру­ем точку . Если , то зна­че­ние функ­ции равно . Зна­чит, имеем точку с ко­ор­ди­на­та­ми (.

За­да­ча: со­ста­вить урав­не­ние ка­са­тель­ной. Более стро­гая фор­му­ли­ров­ка – на­пи­сать урав­не­ние ка­са­тель­ной к функ­ции  в точке с абс­цис­сой , в ко­то­рой  - су­ще­ству­ет.

Урав­не­ние ка­са­тель­ной – это пря­мая,  ко­то­рая за­да­ет­ся фор­му­лой  

Любая пря­мая, в том числе и ка­са­тель­ная, опре­де­ля­ет­ся двумя чис­ла­ми: и . Ис­хо­дя из гео­мет­ри­че­ско­го смыс­ла про­из­вод­ной  (тан­генс угла на­кло­на ка­са­тель­ной) – это есть уг­ло­вой ко­эф­фи­ци­ент .

Па­ра­метр  най­дем из усло­вия, что ка­са­тель­ная про­хо­дит через точку (, то есть  . 

 .

Стало быть  .

За­пи­шем урав­не­ние ка­са­тель­ной

.

Или, .

По­лу­чи­ли урав­не­ние ка­са­тель­ной к кри­вой  в точке с абс­цис­сой .

Смысл каж­до­го эле­мен­та, ко­то­рый вхо­дит в урав­не­ние ка­са­тель­ной.

1) ( – точка ка­са­ния ка­са­тель­ной и гра­фи­ка функ­ции.

2)  - уг­ло­вой ко­эф­фи­ци­ент ка­са­тель­ной к гра­фи­ку функ­ции.

3)  – про­из­воль­ная точка на ка­са­тель­ной.

Очень много задач, когда за­да­на точка, ко­то­рая не лежит на гра­фи­ке функ­ции, и через нее надо про­ве­сти ка­са­тель­ную к дан­ной функ­ции. Надо четко по­ни­мать, что   – это про­из­воль­ная точка на ка­са­тель­ной.

Итак, по­лу­чи­ли урав­не­ние ка­са­тель­ной, про­ана­ли­зи­ро­ва­ли смысл каж­до­го эле­мен­та этой ка­са­тель­ной, и те­перь при­ве­дем при­мер, и на нем из­ло­жим ме­то­ди­ку по­стро­е­ния ка­са­тель­ной.

За­да­ча.

К кри­вой  в точке с абс­цис­сой  про­ве­сти ка­са­тель­ную. Про­ил­лю­стри­ру­ем поиск ка­са­тель­ной на ри­сун­ке (см. рис.2).

 

www.kursoteka.ru

10 класс. Алгебра. Производная. Уравнение касательной к графику функции. Дифференцирование сложной функции. - Уравнение касательной к графику функции.

Комментарии преподавателя

Урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции

На преды­ду­щих за­ня­ти­ях были рас­смот­ре­ны за­да­чи на тех­ни­ку диф­фе­рен­ци­ро­ва­ния. Это очень важ­ные за­да­чи, и на­хож­де­ние про­из­вод­ных необ­хо­ди­мо в раз­ных за­да­чах, в том числе и в со­став­ле­нии урав­не­ния ка­са­тель­ной.

 По­стро­им кри­вую  (см. рис.1).

 

Рис. 1. Гра­фик функ­ции .

За­фик­си­ру­ем точку . Если , то зна­че­ние функ­ции равно . Зна­чит, имеем точку с ко­ор­ди­на­та­ми (.

За­да­ча: со­ста­вить урав­не­ние ка­са­тель­ной. Более стро­гая фор­му­ли­ров­ка – на­пи­сать урав­не­ние ка­са­тель­ной к функ­ции  в точке с абс­цис­сой , в ко­то­рой  - су­ще­ству­ет.

Урав­не­ние ка­са­тель­ной – это пря­мая,  ко­то­рая за­да­ет­ся фор­му­лой  

Любая пря­мая, в том числе и ка­са­тель­ная, опре­де­ля­ет­ся двумя чис­ла­ми: и . Ис­хо­дя из гео­мет­ри­че­ско­го смыс­ла про­из­вод­ной  (тан­генс угла на­кло­на ка­са­тель­ной) – это есть уг­ло­вой ко­эф­фи­ци­ент .

Па­ра­метр  най­дем из усло­вия, что ка­са­тель­ная про­хо­дит через точку (, то есть  . 

 .

Стало быть  .

За­пи­шем урав­не­ние ка­са­тель­ной

.

Или, .

По­лу­чи­ли урав­не­ние ка­са­тель­ной к кри­вой  в точке с абс­цис­сой .

Смысл каж­до­го эле­мен­та, ко­то­рый вхо­дит в урав­не­ние ка­са­тель­ной.

1) ( – точка ка­са­ния ка­са­тель­ной и гра­фи­ка функ­ции.

2)  - уг­ло­вой ко­эф­фи­ци­ент ка­са­тель­ной к гра­фи­ку функ­ции.

3)  – про­из­воль­ная точка на ка­са­тель­ной.

Очень много задач, когда за­да­на точка, ко­то­рая не лежит на гра­фи­ке функ­ции, и через нее надо про­ве­сти ка­са­тель­ную к дан­ной функ­ции. Надо четко по­ни­мать, что   – это про­из­воль­ная точка на ка­са­тель­ной.

Итак, по­лу­чи­ли урав­не­ние ка­са­тель­ной, про­ана­ли­зи­ро­ва­ли смысл каж­до­го эле­мен­та этой ка­са­тель­ной, и те­перь при­ве­дем при­мер, и на нем из­ло­жим ме­то­ди­ку по­стро­е­ния ка­са­тель­ной.

За­да­ча.

К кри­вой  в точке с абс­цис­сой  про­ве­сти ка­са­тель­ную. Про­ил­лю­стри­ру­ем поиск ка­са­тель­ной на ри­сун­ке (см. рис.2).

 

Рис. 2. Ка­са­тель­ная к гра­фи­ку функ­ции .

За­фик­си­ру­ем точку . Зна­че­ние функ­ции в этой точке  равно 1.

Ал­го­ритм со­став­ле­ния урав­не­ния ка­са­тель­ной к гра­фи­ку функ­ции:

1)  Найти  и точку ка­са­ния. 

 - дано.Точка ка­са­ния: (;.

2) Найти про­из­вод­ную в любой точке .

.

3) Найти зна­че­ние про­из­вод­ной в точке с абс­цис­сой .

 .

4) Вы­пи­сать и про­ана­ли­зи­ро­вать урав­не­ние ка­са­тель­ной.

.

Упро­ща­ем и по­лу­ча­ем:  .

Ответ: .

За­да­ча 1.

Пусть дано урав­не­ние ка­са­тель­ной .

Най­ди­те точки пе­ре­се­че­ния ка­са­тель­ной с осями ко­ор­ди­нат.

Если , то .  – это пер­вая точка.

Если , то  .  - вто­рая точка.

Итак, пер­вая точка – это точка  с ко­ор­ди­на­та­ми 

www.kursoteka.ru

5. Производная ⋆ Social AstroWay- Развлекательно-информационный портал

На уроке рассматривается тема «Уравнение касательной к графику функции». Выводится  уравнение касательной к графику функции. Затем, чтобы успешно решать задачи на касательную, будет рассмотрен смысл каждого его элемента.

Тема: Производная

Урок: Уравнение касательной к графику функции

1. Уравнение касательной к графику функции

На предыдущих занятиях были рассмотрены задачи на технику дифференцирования. Это очень важные задачи, и нахождение производных необходимо в разных задачах, в том числе и в составлении уравнения касательной.

 Построим кривую  (см. рис.1).

 

Рис. 1. График функции .

Зафиксируем точку . Если , то значение функции равно . Значит, имеем точку с координатами (.

Задача: составить уравнение касательной. Более строгая формулировка – написать уравнение касательной к функции  в точке с абсциссой , в которой  — существует.

Уравнение касательной – это прямая,  которая задается формулой  

Любая прямая, в том числе и касательная, определяется двумя числами: и . Исходя из геометрического смысла производной  (тангенс угла наклона касательной) – это есть угловой коэффициент .

Параметр  найдем из условия, что касательная проходит через точку (, то есть  . 

 .

Стало быть  .

Запишем уравнение касательной

.

Или, .

Получили уравнение касательной к кривой  в точке с абсциссой .

2. Смысл элементов уравнения касательной

Смысл каждого элемента, который входит в уравнение касательной.

1) ( – точка касания касательной и графика функции.

2)  — угловой коэффициент касательной к графику функции.

3)  – произвольная точка на касательной.

Очень много задач, когда задана точка, которая не лежит на графике функции, и через нее надо провести касательную к данной функции. Надо четко понимать, что   – это произвольная точка на касательной.

Итак, получили уравнение касательной, проанализировали смысл каждого элемента этой касательной, и теперь приведем пример, и на нем изложим методику построения касательной.

3. Алгоритм составления уравнения касательной к графику функции

Задача.

К кривой  в точке с абсциссой  провести касательную. Проиллюстрируем поиск касательной на рисунке (см. рис.2).

 

Рис. 2. Касательная к графику функции .

Зафиксируем точку . Значение функции в этой точке  равно 1.

Алгоритм составления уравнения касательной к графику функции:

1)  Найти  и точку касания. 

 — дано.Точка касания: (;.

2) Найти производную в любой точке .

.

3) Найти значение производной в точке с абсциссой .

 .

4) Выписать и проанализировать уравнение касательной.

.

Упрощаем и получаем:  .

Ответ: .

4. Сопутствующие задачи

Задача 1.

Пусть дано уравнение касательной .

Найдите точки пересечения касательной с осями координат.

Если , то .  – это первая точка.

Если , то  .  — вторая точка.

Итак, первая точка – это точка  с координатами . Вторая точка – точка пересечения с осью  , точка  с координатами  (см. рис.3).

Рис.3. Точки пересечения касательной к графику функции  с осями координат. Задача 2.

Найти длину отрезка касательной, которая отсекается осями координат, то есть надо найти длину отрезка .

Рассмотрим прямоугольный треугольник (Рис. 3). Длина катета  равна 1. Длина катета   . Длину отрезка  из прямоугольного треугольника найдем по теореме Пифагора:

 

Задача 3.

Найти площадь треугольника, образованного касательной и осями координат. Ясно, что это площадь треугольника (Рис. 3) — площадь треугольника, образованного касательной и осями координат.

Следующая задача для самостоятельного решения.

Найдите радиус окружности, вписанной в треугольник . Радиус окружности, описанной около треугольника .

5. Касательная к графику тригонометрической функции

Рассмотрим пример.

Дана функция . Написать уравнение касательной к данной кривой в точке с данной абсциссой.

Рассмотрим графическую иллюстрацию (см. рис.4).

Рис. 4. Касательная к  графику функции .

Нахождение точки касания.

1.   Точка касания имеет координаты .

2. Найти .

3. Найти

И, последнее действие, – написать уравнение касательной.

4. .

 Упростим и получим  .

Заметим в точке  синусоида и касательная соприкасаются. В районе точки  синусоида и прямая почти не различаются.

6. Итог урока

Итак, мы вывели уравнение касательной. Рассмотрели все элементы этой касательной. Выяснили их смысл. Сформулировали одну из методик нахождения касательных в конкретных функциях, в конкретных точках и решили некоторые сопутствующие задачи.

 

Список рекомендованной литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. ЗвавичЛ.И., Шляпочник Л.Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.

8. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

9. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

10. Глейзер Г.И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983

 

Дополнительные веб-ресурсы

1. Интернет-портал Mathematics.ru (Источник). 

2. Портал Естественных Наук (Источник). 

3. Интернет-портал Exponenta.ru (Источник).

 

Сделай дома

№ 43.22, 43.25 (Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.)

Источник Редактор InternetUrok.ru

astroway.info