Свойства внешнего угла треугольника. Угол треугольника


Виды треугольников. Углы треугольника :: SYL.ru

Самый простой многоугольник, который изучается в школе — это треугольник. Он более понятен для учащихся и встречает меньше трудностей. Несмотря на то что существуют различные виды треугольников, у которых имеются особенные свойства.

Какая фигура называется треугольником?

Образованная тремя точками и отрезками. Первые называются вершинами, вторые — сторонами. Причем все три отрезка должны быть соединены, чтобы между ними образовывались углы. Отсюда и название фигуры «треугольник».

Различия в названиях по углам

Поскольку они могут быть острыми, тупыми и прямыми, то и виды треугольников определяются по этим названиям. Соответственно, групп таких фигур три.

  • Первая. Если все углы треугольника острые, то он будет иметь название остроугольного. Все логично.
  • Вторая. Один из углов тупой, значит треугольник тупоугольный. Проще некуда.
  • Третья. Имеется угол, равный 90 градусам, который называется прямым. Треугольник становится прямоугольным.

Различия в названиях по сторонам

В зависимости от особенностей сторон выделяют такие виды треугольников:

  • общий случай — разносторонний, в котором все стороны имеют произвольную длину;

  • равнобедренный, у двух сторон которого имеются одинаковые числовые значения;

  • равносторонний, длины всех его сторон одинаковые.

Если в задаче не указан конкретный вид треугольника, то нужно чертить произвольный. У которого все углы острые, а стороны имеют разную длину.

Свойства, общие для всех треугольников

  1. Если сложить все углы треугольника, то получится число, равное 180º. И неважно, какого он вида. Это правило действует всегда.
  2. Числовое значение любой стороны треугольника меньше, чем сложенные вместе две другие. При этом она же больше, чем их разность.
  3. Каждый внешний угол имеет значение, которое получается при сложении двух внутренних, не смежных с ним. Причем он всегда больше, чем смежный с ним внутренний.
  4. Напротив меньшей стороны треугольника всегда лежит самый маленький угол. И наоборот, если сторона большая, то и угол будет самым большим.

Эти свойства справедливы всегда, какие бы виды треугольников ни рассматривались в задачах. Все остальные вытекают из конкретных особенностей.

Свойства равнобедренного треугольника

  • Углы, которые прилегают к основанию, равны.
  • Высота, которая проведена к основанию, является также медианой и биссектрисой.
  • Высоты, медианы и биссектрисы, которые построены к боковым сторонам треугольника, соответственно равны друг другу.

Свойства равностороннего треугольника

Если имеется такая фигура, то будут верны все свойства, описанные немного выше. Потому что равносторонний всегда будет равнобедренным. Но не наоборот, равнобедренный треугольник не обязательно будет равносторонним.

  • Все его углы равны друг другу и имеют значение 60º.
  • Любая медиана равностороннего треугольника является его высотой и биссектрисой. Причем они все равны друг другу. Для определения их значений существует формула, которая состоит из произведения стороны на квадратный корень из 3, деленного на 2.

Свойства прямоугольного треугольника

  • Два острых угла дают в сумме значение в 90º.
  • Длина гипотенузы всегда больше, чем у любого из катетов.
  • Числовое значение медианы, проведенной к гипотенузе, равно ее половине.
  • Этому же значению равен катет, если он лежит напротив угла в 30º.
  • Высота, которая проведена из вершины со значением 90º, имеет определенную математическую зависимость от катетов: 1/н2 = 1/а2 + 1/в2. Здесь: а, в — катеты, н — высота.

Задачи с разными видами треугольников

№1. Дан равнобедренный треугольник. Его периметр известен и равен 90 см. Требуется узнать его стороны. В качестве дополнительного условия: боковая сторона меньше основания в 1,2 раза.

Решение

Значение периметра напрямую зависит от тех величин, которые нужно найти. Сумма всех трех сторон и даст 90 см. Теперь нужно вспомнить признак треугольника, по которому он является равнобедренным. То есть две стороны равны. Можно составить уравнение с двумя неизвестными: 2а + в = 90. Здесь а — боковая сторона, в — основание.

Настала очередь дополнительного условия. Следуя ему, получается второе уравнение: в = 1,2а. Можно выполнить подстановку этого выражения в первое. Получится: 2а + 1,2а = 90. После преобразований: 3,2а = 90. Отсюда а = 28,125 (см). Теперь несложно узнать основание. Лучше всего это сделать из второго условия: в = 1,2 * 28,125 = 33,75 (см).

Для проверки можно сложить три значения: 28,125 * 2 + 33,75 = 90 (см). Все верно.

Ответ: стороны треугольника равны 28,125 см, 28,125 см, 33,75 см.

№2. Сторона равностороннего треугольника равна 12 см. Нужно вычислить его высоту.

Решение. Для поиска ответа достаточно вернуться к тому моменту, где были описаны свойства треугольника. Так указана формула для нахождения высоты, медианы и биссектрисы равностороннего треугольника.

н = а * √3 / 2, где н — высота, а — сторона.

Подстановка и вычисление дают такой результат: н = 6 √3 (см).

Эту формулу необязательно запоминать. Достаточно вспомнить, что высота делит треугольник на два прямоугольных. Причем она оказывается катетом, а гипотенуза в нем — это сторона исходного, второй катет — половина известной стороны. Теперь нужно записать теорему Пифагора и вывести формулу для высоты.

Ответ: высота равна 6 √3 см.

№3. Дан МКР — треугольник, 90 градусов в котором составляет угол К. Известны стороны МР и КР, они равны соответственно 30 и 15 см. Нужно узнать значение угла Р.

Решение. Если сделать чертеж, то становится ясно, что МР — гипотенуза. Причем она в два раза больше катета КР. Снова нужно обратиться к свойствам. Одно из них как раз связано с углами. Из него понятно, что угол КМР равен 30º. Значит искомый угол Р будет равен 60º. Это следует из другого свойства, которое утверждает, что сумма двух острых углов должна равняться 90º.

Ответ: угол Р равен 60º.

№4. Нужно найти все углы равнобедренного треугольника. Про него известно, что внешний угол от угла при основании равен 110º.

Решение. Поскольку дан только внешний угол, то этим и нужно воспользоваться. Он образует с внутренним углом развернутый. Значит в сумме они дадут 180º. То есть угол при основании треугольника будет равен 70º. Так как он равнобедренный, то второй угол имеет такое же значение. Осталось вычислить третий угол. По свойству, общему для всех треугольников, сумма углов равна 180º. Значит, третий определится как 180º - 70º - 70º = 40º.

Ответ: углы равны 70º, 70º, 40º.

№5. Известно, что в равнобедренном треугольнике угол, лежащий напротив основания, равен 90º. На основании отмечена точка. Отрезок, соединяющий ее с прямым углом, делит его в отношении 1 к 4. Нужно узнать все углы меньшего треугольника.

Решение. Один из углов можно определить сразу. Поскольку треугольник прямоугольный и равнобедренный, то те, что лежат у его основания, будут по 45º, то есть по 90º/2.

Второй из них поможет найти известное в условии отношение. Поскольку оно равно 1 к 4, то частей, на которые он делится получается всего 5. Значит, чтобы узнать меньший угол треугольника нужно 90º/5 = 18º. Осталось узнать третий. Для этого из 180º (суммы всех углов треугольника) нужно вычесть 45º и 18º. Вычисления несложные, и получится: 117º.

Ответ: 18º, 45º, 117º

www.syl.ru

Внешний угол треугольника | Треугольники

Углы треугольника бывают внутренние и внешние. Что такое внешний угол треугольника? Как его найти?

Определение.

Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.

Как построить внешний угол треугольника? Нужно продлить сторону треугольника.

На рисунке:

∠3 — внешний угол при вершине А,

∠2 — внешний угол при вершине С,

∠1 — внешний угол при вершине В.

Сколько внешних углов у треугольника?

При каждой вершине треугольника есть два внешних угла. Чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. Таким образом получаем 6 внешних углов.

Внешние углы каждой пары при данной вершины равны между собой (как вертикальные):

∠1=∠4,  ∠2=∠5,  ∠3=∠6.

Поэтому, когда говорят о внешнем угле треугольника, не важно, какую из сторон треугольника продлили.

Чему равен внешний угол?

Теорема (о внешнем угле треугольника)

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Дано: ∆АВС, ∠1 — внешний угол при вершине С.

Доказать: ∠1=∠А+∠В.

 

Доказательство:

Так как сумма углов треугольника равна 180º, ∠А+∠В+∠С=180º.

Следовательно, ∠С=180º-(∠А+∠В).

∠1 и ∠С (∠АСВ) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠С=180º-(180º-(∠А+∠В))=180º-180º+(∠А+∠В)=∠А+∠В.

Что и требовалось доказать.

 

www.treugolniki.ru

Определение угла | Треугольники

Что такое угол? Введём определение угла.

Определение.

Угол — это геометрическая фигура, состоящая из двух различных лучей, выходящих из одной точки.

Лучи называются сторонами угла, а их общее начало — вершиной угла.

Например, вершина угла BAC — точка A, стороны — лучи AB и AC.

Знак угла — ∠ — представляет собой уменьшенное изображение угла.

Запись «∠ABC» читают как «угол ABC».

Угол можно назвать одной или тремя буквами. Если буква одна, то это — вершина угла. Если букв три, то вершина вершина должна стоять посередине, а по бокам — точки, лежащие на сторонах угла:

∠B или ∠ABC или ∠CBA.

Другой способ определить угол: по названию лучей — сторон угла.

∠(a; b) — угол, стороны которого — лучи a и b.

Обозначают угол дужкой.

Два угла называются равными, если они могут быть совмещены так, что совпадут их соответствующие стороны и вершины.

 

∠BAC=∠MNK.

Равные углы обозначают равным количеством дужек.

Единицы измерения углов — градусы и радианы.

1 градус (1º) равен 1/180 доле развёрнутого угла.

Градусную меру угла измеряют с помощью транспортира.

1 радиан — величина центрального угла, опирающегося на дугу окружности, равной её радиусу.

Наглядное представление об угле в 1 радиан можно получить, если отрезать кусок нити длиной, равной радиусу окружности, и приложить эту нить к окружности. Центральный угол, опирающийся на полученную дугу, — это и есть угол в один радиан:

 

∠ABC=1 радиану

 

1 радиан ≈ 57º,   π радиан=180º.

Основные свойства измерения углов:

Каждый угол имеет определённую градусную меру, большую нуля.

Развёрнутый угол равен 180 градусам.

Градусная мера угла равна сумме градусных мер углов, на которые они разбиваются любым лучом, проходящим между его сторонами.

 

Иногда угол определяют как часть плоскости, заключённую между двумя лучами с общим началом.

В тех случаях, когда угол рассматривают как меру поворота луча вокруг его начала до заданного положения, величина угла может принимать любые значения, в зависимости от направления поворота как положительные, так и отрицательные.

www.treugolniki.ru

Внешний угол треугольника. Сумма внешних углов

Внешний угол треугольника – это угол, смежный с любым из внутренних углов треугольника.

При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:

Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны.

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:

∠1 + ∠4 = 180°

Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:

∠2 + ∠3 + ∠4 = 180°

Из этого следует, что

∠1 + ∠4 = ∠2 + ∠3 + ∠4

Сократив обе части полученного равенства на одно и тоже число (∠4), получим:

∠1 = ∠2 + ∠3

Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.

Сумма внешних углов

Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°

Рассмотрим треугольник ABC:

Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:

(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°

Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:

∠1 + ∠2 + ∠3 = 540° - (∠4 + ∠5 + ∠6) = 540° - 180° = 360°

naobumium.info

Свойства внешнего угла треугольника, с примерами

ОПРЕДЕЛЕНИЕ

Угол, смежный с внутренним углом треугольника, называется внешним углом.

При каждой вершине треугольника есть два внешних угла. Чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина.

Свойства внешнего угла

  1. Внешний угол треугольника равен сумме внутренних углов не смежных с ним:

       

  2. Сумма внешнего и внутреннего углов при одной вершине равна :

       

  3. Сумма внешних углов треугольник взятых по одному при каждой вершине равна .
  4. Внешние углы при одной вершине треугольника равны между собой (как вертикальные):

       

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

могут быть углы треугольника | Треугольники

Какими могут быть углы треугольника? Могут ли быть все углы треугольника острыми? Тупыми? Прямыми? Могут ли все углы треугольника быть равными? Ответы на эти вопросы можно получить с помощью теоремы о сумме углов треугольника.

Острый угол — это угол с градусной мерой от 0º до 90º.

Прямой угол — это угол, величина которого равна 90º.

Тупой угол — это угол, градусная мера которого может изменяться от 90ºдо 180º.

По теореме о сумме углов треугольника, сумма углов треугольника равна 180º. 

Может ли в треугольнике быть два тупых угла?

Поскольку градусная мера тупого угла больше 90º, сумма двух тупых углов больше180º. Сумма углов треугольника равна 180º, поэтому двух тупых углов в треугольнике быть не может.

Может ли в треугольнике быть два прямых угла?

Так как градусная мера прямого угла равна 90º, сумма двух прямых углов равна 180º. Сумма всех трех углов треугольника — 180º, значит, двух прямых углов в треугольнике быть не может.

Тем более, все три угла треугольника не могут быть прямыми или тупыми.

А вот острыми все три угла треугольника могут быть. И равными между собой — тоже.

Если все углы треугольника равны, чтобы их найти, делим 180ºна 3:

180:3= 60º .

Если у треугольника все углы равны, то и все стороны тоже равны.

Такой треугольник называется равносторонним или правильным.

Более того, у любого треугольника острых углов — не меньше двух (если предположить, что острых углов меньше двух, то два не острых в сумме дают 180º или больше, что противоречит теореме о сумме углов треугольника).

Могут ли углы треугольника быть равными 23º, 78º и 79º?

Проверяем выполнение теоремы о сумме углов треугольника: 23º+78º+79º=180º. Получили верное равенство. Значит, треугольник с такими углами существует.

www.treugolniki.ru

Виды треугольников, углы и стороны

Пожалуй, самой основной, простой и интересной фигурой в геометрии является треугольник. В курсе средней школы изучаются его основные свойства, однако иногда знания по этой теме формируются неполными. Виды треугольников изначально определяют их свойства. Но подобное представление остается смешанным. Поэтому сейчас разберем немного подробнее эту тему.

Виды треугольников зависят от градусной меры углов. Эти фигуры бывают остро-, прямо- и тупоугольными. Если все углы не превышают значения в 90 градусов, то фигуру смело можно назвать остроугольной. Если хотя бы один угол треугольника равен 90 градусам, то вы имеете дело с прямоугольным подвидом. Соответственно, во всех остальных случаях рассматриваемую геометрическую фигуру называют тупоугольной.

Существует множество задач для остроугольных подвидов. Отличительной чертой является внутреннее местонахождение точек пересечения биссектрис, медиан и высот. В других случаях это условие может не выполняться. Определить тип фигуры “треугольник” нетрудно. Достаточно знать, например, косинус каждого угла. Если какие-нибудь значения меньше нуля, значит, треугольник в любом случае является тупоугольным. В случае нулевого показателя фигура обладает прямым углом. Все положительные значения гарантированно подскажут вам о том, что перед вами остроугольный вид.

Нельзя не сказать о правильном треугольнике. Это самый идеальный вид, где совпадают все точки пересечения медиан, биссектрис и высот. Центр вписанной и описанной окружности лежит также в одном месте. Для решения задач необходимо знать только одну сторону, так как вам углы изначально заданы, а две другие стороны известной. То есть фигура задается только одним параметром. Существуют равнобедренные треугольники. Их главная особенность – равенство двух сторон и углов при основании.

Иногда встречается вопрос о том, существует ли треугольник с заданными сторонами. На самом деле вас спрашивают, подходит ли данное описание под основные виды. Например, если сумма двух сторон меньше третьей, то в реальности такой фигуры не существует вообще. Если в задании просят найти косинусы углов треугольника со сторонами 3,5,9, то здесь очевидный подвох. Это можно объяснить без сложных математических приемов. Предположим, вы хотите из пункта A попасть в пункт B. Расстояние по прямой равно 9 километрам. Однако вы вспомнили, что необходимо зайти в пункт C в магазин. Расстояние от А до С равно 3 километрам, а от С до В - 5. Таким образом получается, что, двигаясь через магазин, вы пройдете на один километр меньше. Но так как пункт C не расположен на прямой AB, то вам придется пройти лишнее расстояние. Здесь возникает противоречие. Это, конечно, условное объяснение. Математика знает не один способ доказательства того, что все виды треугольников подчиняются основному тождеству. Оно гласит о том, что сумма двух сторон больше длины третьей.

Любой вид обладает следующими свойствами:

1) Сумма всех углов равняется 180 градусам.

2) Всегда существует ортоцентр – точка пересечения всех трех высот.

3) Все три медианы, проведенные из вершин внутренних углов, пересекаются в одном месте.

4) Вокруг любого треугольника можно описать окружность. Также можно вписать круг так, чтобы он имел только три точки соприкосновения и не выходил за внешние стороны.

Теперь вы познакомились с основными свойствами, которыми обладают различные виды треугольников. В будущем важно понимать, с чем вы имеете дело при решении задачи.

fb.ru