Сколько градусов по Цельсию в космическом пространстве? Температура космоса по цельсию


Температура в космосе по Цельсию. Какая температура в открытом космосе? :: SYL.ru

Какая температура в космосе за пределами земной атмосферы? А в межзвездном пространстве? А если мы выйдем за пределы нашей галактики, будет ли там холоднее, чем внутри Солнечной системы? И можно ли вообще говорить о температуре применительно к вакууму? Попробуем разобраться.

Что такое тепло

Для начала необходимо понять, чем же в принципе является температура, как образуется тепло и отчего возникает холод. Чтобы ответить на эти вопросы, необходимо рассмотреть строение материи на микроуровне. Все вещества во Вселенной состоят из элементарных частиц - электронов, протонов, фотонов и так далее. Из их сочетания образуются атомы и молекулы.

Микрочастицы не являются неподвижными объектами. Атомы и молекулы постоянно колеблются. А элементарные частицы и вовсе перемещаются со скоростями, близкими к световым. Какая тут связь с температурой? Прямая: энергия движения микрочастиц - это и есть тепло. Чем сильнее колеблются молекулы в куске металла, например, тем горячее он будет.

Что такое холод

Но если тепло - это энергия движения микрочастиц, то какой будет температура в космосе, в вакууме? Конечно, межзвездное пространство не совсем пустое - сквозь него движутся фотоны, несущие свет. Но плотность материи там намного ниже, чем на Земле.

Чем меньше атомы сталкиваются друг с другом, тем слабее греется вещество, которое из них состоит. Если находящийся под большим давлением газ выпустить в разреженное пространство, его температура резко понизится. На этом принципе основана работа всем известного компрессорного холодильника. Таким образом, температура в открытом космосе, где частицы находятся очень далеко друг от друга и не имеют возможности сталкиваться, должна стремиться к абсолютному нулю. Но так ли это на практике?

Как происходит передача тепла

Когда вещество нагревается, его атомы испускают фотоны. Это явление тоже хорошо всем знакомо - накалившийся металлический волосок в электрической лампочке начинает ярко светиться. При этом фотоны переносят тепло. Таким образом энергия переходит от горячего вещества к холодному.

Космическое пространство не только пронизано фотонами, которые испускают бесчисленные звезды и галактики. Вселенная заполнена также так называемым реликтовым излучением, которое образовалось на ранних этапах ее существования. Именно благодаря этому явлению температура в космосе не может опуститься до абсолютного нуля. Даже вдали от звезд и галактик материя будет получать рассеянное по Вселенной тепло от реликтового излучения.

Что такое абсолютный нуль

Никакое вещество нельзя охладить ниже определенной температуры. Ведь остывание - это потеря энергии. В соответствии с законами термодинамики в определенной точке энтропия системы достигнет нуля. В этом состоянии вещество уже не сможет терять энергию. Это и будет предельно возможная низкая температура.

Абсолютный нуль - это минус 273,15 °C или ноль по шкале Кельвина. Теоретически такую температуру можно получить в замкнутых системах. Но на практике нигде во Вселенной невозможно создать область пространства, на которую не действовали бы никакие внешние силы.

Какая температура в космосе

Наша Вселенная не однородна. Ядра звезд раскалены до миллионов градусов. Но большая часть пространства, конечно же, значительно холодней. Если говорить о том, какая температура в открытом космосе, то она всего на 2,7 градуса выше значения абсолютного нуля и составляет минус 270,45 по Цельсию.

Это тепло возникает за счет уже упоминавшегося реликтового излучения. Но Вселенная расширяется, а это означает, что ее температура будет постепенно снижаться. Теоретически через триллионы лет вещество в ней может охладиться до минимально возможной отметки. Но вопрос о том, закончится ли расширение Вселенной "тепловой смертью", либо же она станет более разнородной и структурированной из-за действия сил гравитации, остается предметом дискуссий.

В местах скопления материи теплее, но ненамного. Облака газа и пыли, встречающиеся между звездами нашей галактики, имеют температуру от 10 до 20 градусов выше абсолютного нуля, то есть минус 263-253 °C. И только вблизи звезд, внутри которых протекают реакции ядерного синтеза, можно найти достаточно тепла для комфортного существования белковых форм жизни.

Температура на околоземной орбите

А какова температура вблизи нашей планеты? Стоит ли космонавтам, отправляющимся на МКС, запасаться теплыми вещами? На околоземной орбите металл под прямыми лучами солнца прогревается до 160 градусов Цельсия. В то же время в тени предметы будут остывать до минус 100 °C. Поэтому для выхода в открытый космос используются скафандры с надежной теплоизоляцией, нагревателями и системой охлаждения, защищающие человека от столь серьезного перепада температур.

Не менее экстремальные условия на поверхности Луны. На ее освещенной стороне жарче, чем в Сахаре. Температура там может превысить 120 °C. Но на темной стороне она падает приблизительно до минус 170 °С. Во время высадки на Луну американцы использовали скафандры, в которых было 17 слоев защитных материалов. Терморегуляция обеспечивалась специальной системой трубочек, в которых циркулировала вода.

Температура на других планетах Солнечной системы

На климат большое влияние оказывает наличие либо отсутствие атмосферы. Это второй по значению фактор после расстояния до Солнца. Понятно, что по мере удаления от светила температура в космосе падает. Но наличие атмосферы позволяет удержать часть тепла благодаря парниковому эффекту.

Наиболее яркой иллюстрацией этого явления может служить климат Венеры. Температура на ее поверхности достигает 477 °C. Благодаря атмосфере Венера жарче, чем Меркурий, который находится ближе к Солнцу.

Средняя температура поверхности Меркурия 349,9 °C днем и минус 170,2 °C ночью.

Марс может нагреваться до 35 градусов Цельсия летом на экваторе и охлаждаться до -143 °C зимой в районе полярных шапок.

На Юпитере температура достигает -153 °C.

Но чем дальше от Солнца, тем холоднее. Уран уже не спасает даже атмосферный слой. Он хоть и задерживает тепло, не давая ему сразу уходить в открытый космос, но температура там все равно падает до минус 224 °C.

Но холоднее всего на Плутоне. Температура его поверхности - минус 240 °C. Это лишь на 33 градуса выше абсолютного нуля.

Самое холодное место в космосе

Выше было сказано, что межзвездное пространство прогревается реликтовым излучением, а потому температура в космосе по Цельсию не опускается ниже минус 270 градусов. Но оказывается, могут существовать и более холодные участки.

В 1998 году телескоп Хаббл обнаружил газо-пылевое облако, которое стремительно расширяется. Туманность, названная Бумерангом, образовалась вследствие явления, известного как звездный ветер. Это очень интересный процесс. Суть его состоит в том, что из центральной звезды с огромной скоростью "выдувается" поток материи, которая попадая в разреженное космическое пространство охлаждается вследствие резкого расширения.

По оценкам ученых, температура в туманности Бумеранг составляет всего один градус по шкале Кельвина, или минус 272 °C. Это самая низкая температура в космосе, которую на данный момент удалось зафиксировать астрономам. Туманность Бумеранг находится на расстоянии 5 тысяч световых лет от Земли. Наблюдать ее можно в созвездии Центавра.

Самая низкая температура на Земле

Итак, мы выяснили, какая температура в космосе и какое место самое холодное. Теперь остается узнать, какие самые низкие температуры были получены на Земле. А произошло это в ходе недавних научных экспериментов.

В 2000 году исследователи из Технологического университета в Хельсинки охладили кусок металла родия почти до абсолютного нуля. В ходе эксперимента была получена температура равная 1*10-10 Кельвина. Это всего на 0,000 000 000 1 градуса выше нижнего предела.

Целью исследований было не только получение сверхнизких температур. Основная задача заключалась в изучении магнетизма ядер атомов родия. Это исследование было весьма успешным и принесло ряд интересных результатов. Эксперимент помог понять, как магнетизм влияет на сверхпроводящие электроны.

Достижение рекордно низких температур состоит из нескольких последовательных этапов охлаждения. Вначале с помощью криостата металл охлаждается до температуры 3*10-3 Кельвина. На следующих двух этапах используется метод адиабатического ядерного размагничивания. Родий охлаждается до температуры сначала 5*10-5 Кельвина, а затем достигает рекордно низкой температуры.

www.syl.ru

Какая температура в открытом космосе? | Техкульт

Вопрос, поставленный в заголовке, в принципе является некорректным, ведь космос представляет собой пустоту, то есть пространство, где нет ничего. А температуру «ничего» измерить невозможно. Температура — следствие движения (активности) молекул, из которых состоят все материальные объекты. А нет материи – нет и температуры.

Теоретически ноль, а практически…

Космос лишь теоретически является вакуумом, ведь Вселенная согласно общепринятой научной (космологической) модели возникла в результате Большого взрыва, что обусловило реликтовое (космическое электромагнитное) излучение. Его спектр отвечает абсолютно черному телу, имеющему температуру по Кельвину – 2,725 (по Фаренгейту — минус 454,8°, по Цельсию – минус 270,425°).

Электромагнитное излучение в космосе – это дождь фотонов (безмассовых элементарных частиц), присутствующих в терагерцевом, инфракрасном, ультрафиолетовом, рентгеновском и гамма-излучении, а также в радиоволнах.

В наибольшей степени свойствами абсолютно черного тела обладает Солнце, его наружные слои имеют температуру около 6200 К, то есть температура в космосе может разниться.

Определенная роль в «температурном режиме» космоса принадлежит также планетам и их спутникам, астероидам, метеоритам и кометам, космической пыли и молекулам газов. Поэтому во Вселенной могут быть температурные отклонения. К примеру, в туманности Бумеранг (созвездие Центавра) благодаря телескопу «Хаббл» — автоматической обсерватории на орбите Земли была зафиксирована самая низкая космическая температура – 1 К (минус 272 градуса по шкале Цельсия). Ее причиной является «звездный ветер» (поток материи), идущий от центральной звезды.

О наличии космической пыли свидетельствует ночное свечение, обнаруженное астрономами в плоскости зодиакальных созвездий. Свечение, как установили ученые, — это свет, отражаемый от частиц космической пыли.

Материальными являются и космические лучи. В основном их структура состоит из стремительных ядер водородных и гелиевых атомов, а также более тяжелых ядер, к примеру, железа и никеля.

Таким образом, сколько градусов в космосе? Теоретически — 0° по шкале Кельвина или минус 273,15°С. На самом же деле, учитывая реликтовое излучение — 2,725 К (минус 270,425°С). Но это, если не брать во внимание тепло, излучаемое звездами и планетами.

Холодно — жарко

Отвечая на вопрос: «Какая температура в космосе», нужно отметить, что на все тела, находящиеся в космосе, действует не только смертельный для человека холод, но и губительная жара. Простейший пример тому – космический корабль. На его солнечной стороне – жарко, на теневой – холодно. И чем ближе или дальше звездолет от небесного светила, тем больше разница температур.

Положение Солнца влияет и на климат Земли. Одна теория гласит, что вращаясь вокруг Солнца, планета то приближается, то удаляется от него, поэтому происходит и смена времен года: зиму сменяет лето и наоборот. Однако на экваторе никогда не бывает зимы.

Дело в том, что земля вращается в наклонном положении относительно Солнца (23°27') и по-разному разворачивается к нему: то северным, то южным полушарием. Соответственно, лучи Солнца падают отвесно или под углом — в зависимости от этого земная поверхность нагревается больше или меньше.

www.techcult.ru

определение понятия, передача тепла, абсолютный нуль и температура на других планетах

Один из самых интересных вопросов о космосе касается изучения температуры за пределами земной атмосферы. Любопытствующих пользователей интересует также, какова она в межзвездном пространстве и будет ли она холоднее, если двинуться за пределы нашей галактики. С другой стороны, имеет ли смысл вообще вести речь о температуре в отношении вакуума, ведь если это пустота, то сложно представить, что она подвергается температурному воздействию. Давайте разберемся.

Понятие тепло и температура

Сперва стоит выяснить, чем же, по сути, является температура, как появляется тепло и вследствие чего появляется холод. Для этого необходимо проанализировать строение материи на микроуровнях. Каждое вещество во Вселенной состоит из простейших частиц:

  • фотонов;
  • протонов;
  • электронов и проч.

Из их комбинаций формируются атомы и молекулы. Микрочастицы не представляют собой неподвижные объекты.

Молекулы и атомы постоянно движутся и колеблются. А простейшие частицы, более того, передвигаются со скоростями, которые близки к световым. Так какая здесь связь с температурой? Как ни странно, самая прямая: энергия перемещения микрочастиц и является теплом. Чем интенсивнее колеблются, к примеру, молекулы в кусочке металла, тем теплее он станет.

Если тепло — это сила перемещения микрочастиц, то какой именно окажется температурный показатель в вакууме, в том самом космосе? Разумеется, космическое пространство не совершенно пустое — через него передвигаются фотоны, которые несут свет. Однако, плотность материи в нем в разы ниже, чем у нас, на Земле. Чем мельче атомы, которые сталкиваются друг с другом, тем меньше согревается вещество, которое состоит из них.

Если газ, который находится под большим давлением, отпустить в разреженное пространство, то его температура быстро понизится. На данном принципе основывается работа всем знакомого компрессорного холодильника. Соответственно, температурные показатели в космосе, где частицы располагаются весьма далеко друг от друга и не могут сталкиваться, должны стремиться к полному нулю. Однако, так ли это на самом деле?

Как совершается передача тепла

Когда нагревается вещество, его атомы начинают испускают фотоны. Данное явление также отлично всем знакомо — аналогичный принцип наблюдается в накаляющемся металлическом волоске, когда электролампочка начинает ярко гореть. Одновременно фотоны начинают переносить тепло. Соответственно, энергия начинает перемещаться от горячего вещества к прохладному.

Космическое пространство пронизано не только фотонами, которые излучают многочисленные звезды и галактики. Вселенная исполнена в том числе реликтовым излучением, а оно образовалось на начальных этапах появления ее существования. Именно за счет того, что температура в космическом пространстве не может упасть до безусловного нуля. Даже вдали от галактик и звезд материя не прекратит получать тепло, рассеянное по Вселенной от того самого реликтового излучения.

Абсолютный нуль

Ни одно вещество невозможно остудить ниже минимальной температуры. Поскольку остывание — это просто утрата энергии. В строгом соответствии с законами термодинамики, в обусловленной точке энтропия системы дойдет до нуля. В данном состоянии вещество уже не будет способно дальше терять энергию. Это и станет предельно возможной низкой температурой.

Температура абсолютного нуля составляет минус 273,15 градуса по Цельсию или же ноль по системе Кельвина. На теоретическом уровне такую температуру возможно получить только в замкнутых системах. Однако на практике нигде, ни на Земле, ни в космосе, невозможно создать или сымитировать такую область пространства, на которую не могли бы оказывать влияния никакие внешние силы.

Температура в космосе

Вселенная далеко не однородна. Все ядра звезд разогреты до миллиардов градусов. Однако большая часть пространства, само собой разумеется, серьёзно холодней. Если стоит вопрос о температуре в открытом космосе, то, как это ни странно, она всего лишь на 2,7 градуса выше показателя абсолютного нуля. Соответственно, его показатель будет минус 270,45 по Цельсию.

Эта разница в 2,7 градуса возникает по причине реликтового излучения, уже упоминавшегося. Однако, Вселенная распространяется, разрастается (понятие энтропии), а это говорит о том, что ее температура станет потихоньку снижаться. Чисто умозрительно говоря, спустя триллионы лет, материя и вещества в ней имеют возможность остынуть до самой минимальной отметки.

Но вопрос состоит в том, завершится ли в таком случае расширение Вселенной так называемой «тепловой смертью», или же она окажется более структурированной или разнородной из-за воздействия сил гравитации, — это и по сей день остается объектом дискуссий. В участках сосредоточения материи теплее, но ненамного.

Скопления пыли и газа, которые встречаются между звездами нашей галактики, обладают температурой в диапазоне 10−20 градусов выше отметки абсолютного нуля, иначе говоря, минус 263−253 градусов Цельсия. И лишь рядом со звездами, в центре которых происходят реакции ядерного синтеза, находится достаточно теплоты для комфортной жизни белковых форм существования.

Околоземная орбита

Теперь коснемся следующих тем, связанных с нашей главной тематикой:

  1. Какова температура рядом с нашей планетой?
  2. Нужно ли космонавтам, которые отправляются на МКС, припасать теплые вещи?

На околоземной орбите под прямыми солнечными лучами металл накаливается до 150−160 градусов Цельсия. Одновременно с этим в тени предметы остывают до минус 90−100 градусов Цельсия. По этой причине для выхода в открытый космос применяются скафандры:

  • с прочной теплоизоляцией, мощными нагревателями;
  • с отменно работающей системой охлаждения.

Они защищают тело человека от настолько суровых скачков температур.

Такие же экстремальные условия встречаются на плоскости Луны. На ее солнечной стороне даже жарче, чем в самое жаркое время в Сахаре. Температурная отметка там нередко превышает 120 градусов Цельсия. Однако, на несолнечной стороне она снижается предположительно до минус 170 градусов. Во время посадки на Луну американцы воспользовались скафандрами, которые имели порядка 17 слоев предохранительных материалов. Теплорегуляция обеспечивалась специально предназначенной системой трубочек, в которых циркулировала дистиллированная вода.

Прочие планеты Солнечной системы

На любой планете Солнечной системы климат зависит от наличия или отсутствия атмосферы. Атмосфера — вторая по значению причина после дальности до Солнца. Разумеется, по мере удаления от горячей звезды температура в межпланетном пространстве падает. Однако присутствие атмосферы дает возможность удержать часть тепла за счет парникового эффекта. Особенно яркой иллюстрацией данного явления могут послужить климатические характеристики Венеры.

Температура на поверхности этой планеты поднимается до 477 градусов Цельсия. За счет атмосферы Венера жарче Меркурия, находящегося по расположению ближе к Солнцу.

Самое холодное место в космосе

За счет реликтового излучения межзвездное пространство прогревается, а по этой причине температура в космосе не опускается ниже 270 градусов ниже нуля. Однако, как выясняется, могут быть и более холодные участки.

19 лет назад телескоп Хаббл заметил газопылевое облако, стремительно расширяющееся. Туманность, получившая название Бумеранг, сформировалась вследствие явления, знакомого по названию как «звездный ветер». Это весьма любопытный процесс. Суть его заключается в том, что из центральной звезды с громадной скоростью «выдувается» ток материи, которая, влетая в разреженное пространство космоса, остывает вследствие резкого расширения.

По оценкам научных работников, температура в туманности Бумеранг достигает всего одного градуса по Кельвину, то есть -272 Цельсия. Это наиболее низкая отметка в космическом пространстве, которую на текущий момент удалось зарегистрировать астрономам. Туманность Бумеранг располагается на расстоянии 5000 световых лет от нашей планеты. Отслеживать ее можно в плеяде Центавра.

Самая низкая температура на Земле

Мы выяснили информацию насчет самой низкой температурной отметки в космосе — ее величину и точки нахождения. Для полноты раскрытия вопроса остается узнать, какие наиболее низкие температуры были зафиксированы на нашей планете. А произошло это в процессе недавних научных исследований. В 2000 году ученые Технологического университета города Хельсинки остудили металл родия практически до абсолютного нуля. В течение эксперимента они получили температуру равную. 1×10−10 по Кельвину. И эта отметка всего лишь на 1 миллиардную градуса больше нижнего рубежа.

Целью проведенных исследований было не только получение сверхнизких температур. Ключевая задача состояла в изучении магнетизма атомов родия. Данное исследование оказалось крайне эффективным и принесло ряд увлекательных результатов. Эксперимент дал возможность понять, каким образом магнетизм оказывает действие на сверхпроводящие электроны.

Получение рекордно низких температур складывается из нескольких поочередных этапов охлаждения. Сначала с помощью криостата родий остывает до температурной отметки 3×10−3 по Кельвину. На последующих двух ступенях используется метод ядерного адиабатического размагничивания. Металл родия остывает сначала до температуры 5×10−5 по Кельвину, а после этого падает до рекордно низкой температурной отметки.

Видео

Из этого видео вы узнаете, какие бывают температуры в космосе.

liveposts.ru

Какая температура в космосе по Цельсию?

Люди, которые снимают кино, писатели, которые пишут фантастические произведения, своими трудами пытаются простым смертным привести пример. Что как только человек попадает в космическую среду, он сразу же погибает. Это связано с температурой, которая есть в этой среде. А какая температура в космосе?

Кинорежиссеры и фантасты утверждают, что температура в космической среде такая, что ни одно живое создание не способно выдержать ее без специального костюма. Нахождение человека в открытом космосе очень интересно описал Артур Кларк. В его произведении человек, как только попал в открытый космос сразу же погиб из-за жуткого мороза и сильнейшего внутреннего давления. А что говорят по этому поводу ученые?

Что мы называем температурой?

Для начала, давайте определимся с понятиями. Температура – это движение атомов и молекул. Движутся они без конкретного направления. То есть хаотично. Эту величину имеет абсолютно любое тело.

Она зависит от интенсивности движения молекул и атомов. Если нет вещества, то не может идти речь о данной величине. Именно такое место представляет собой космическая среда.

Здесь очень мало материи. Те тела, которые обитают в межгалактической среде, имеют разные тепловые показатели. Эти показатели зависят от множества других факторов.

Как дела обстоят по-настоящему?

На самом деле в пространстве космоса действительно невероятно холодно. Градусы в этом пространстве представляет собой -454 градусов по цельсию. В открытом космическом пространстве важную роль играет именно температура.

Вообще открытое космическое пространство представляет собой пустоту, там нет совсем ничего. Объект, который попадает в космос и находится там, приобретает такую же температуру, как и в окружающей среде.

Воздуха в этом пространстве не существует. Все тепло, которое здесь присутствует, циркулирует, благодаря инфрокрасным лучам. Тепло, получаемое от этих инфракрасных лучей, потихоньку утрачивается. Что это значит? Что объекту, находящемуся в космосе, в итоге принадлежит температура всего пары градусов по Кельвину.

Однако справедливо будет заметить также то, что данный объект замерзает не в один момент. А именно таким образом это экранизируется в фильмах и описывается в художественной литературе. На самом деле, это медленный процесс.

Для того, чтобы абсолютно замерзнуть понадобится несколько часов. Но дело в том, что такая низкая температура, это не единственная опасность. Есть еще факторы, которые способны повлиять на жизнеспособность. В открытом космическом пространстве находятся и постоянно перемещаются разные объекты.

Так как они перемещаются там уже какое-то время, то их температурный режим тоже очень низкий. Если человек соприкоснется с одним из таких объектов, то он в один момент погибнет от обморожения. Поскольку такой предмет заберет у него все тепло.

Ветер

Несмотря на холод, ветер в космическом пространстве может быть достаточно горячим. Градусы верхней части солнца примерно 9 980 градусов по фаренгейту. Сама по себе планета солнце производит инфрокрасные лучи. Между звездами присутствуют газовые облака. Они тоже имеют довольно высокий температурный режим.

Опасность еще и вот в чем. Температура может быть критического значения. Она может действовать огромным давлением на объекты. Они находятся не только в границах атмосферы и конвекции. Орбита, которая обращается к солнцу, может иметь температуру 248 градусов по фаренгейту.

А теневая ее сторона может иметь температуру -148 градусов по фаренгейту. Получается, что разница в температурных режимах велика. В один момент может быть очень разной. Человеческий организм такую разницу в температурных режимах вынести просто не может.

Температура остальных предметов

Планеты солнечной системы.

Градусы других предметов в космосе зависят от разных факторов. От того, насколько они отражаются, от того, насколько они приближены к солнцу. Имеет значение также их форма, весовая категория. Важно, какой промежуток времени они находятся в этом месте.

Возьмем, к примеру, алюминий гладкого типа. Он обращен к солнцу, находится от солнца на том же расстоянии, что и планета Земля. Он нагревается до 850 градусов по фаренгейту. А вот материал, который окрашен белой краской не может иметь температурный режим больше, чем -40 градусов по фаренгейту. Увеличить эти градусы в данном случае не поможет и его обращенность к солнцу.

Нужно учитывать все эти факторы. Человеку никак нельзя попадать в космическую местность без специального снаряжения.

Космические скафандры специально разработаны. Чтобы иметь медленное вращение, чтобы одна сторона длительное время не была на солнце. А также, чтобы она слишком долго не оставалась в теневой части.

Кипение в этом пространстве

Возможно, вам также интересен вопрос, при каких градусах в космическом царстве начинает закипать жидкость? На самом деле, температурный режим, при котором начинает кипеть жидкости – это величина относительная. Она зависит от других величин.

От таких величин, как давление, которое действует на жидкость. Вот почему вода доходит до кипения гораздо быстрее, на более высокой местности. Все потому, что воздух на такой местности является более жидким. Соответственно за границами атмосферы, где воздух не присутствует, температурный режим, при котором начинается кипение, будет ниже.

В вакууме градусы, при которых начинает закипать вода будет ниже температуры в комнате. Именно по этой причине воздействие космической среды представляет собой опасность. В человеческом организме при этом закипает кровь в венах.

Как раз по этой причине в этой среде довольно редко присутствуют:

  • жидкости;
  • тела твердого характера;
  • газы.

lediznaet.ru

Температура в Космосе

Кинорежиссеры и писатели-фантасты постоянно пытаются доказать нам, что человек, который внезапно попал в открытое космическое пространство без скафандра, погибнет за доли секунды. По их утверждениям температура в Космосе такова, что ни одно живое существо без специального снаряжения не в состоянии пробыть в открытом пространстве Вселенной больше секунды. К примеру, об этом достаточно интересно и ярко написано в одном из произведений Артура Кларка: герой, оказавшийся в открытом Космосе, мгновенно погибает из-за сильнейшего мороза и внутреннего давления. Однако, по теоретическим расчетам современных ученых, смерть человека в таких условиях наступает отнюдь не моментально.

Зачастую высказывается предположение о том, что человек, оказавшийся в открытом пространстве космоса, будет разорван изнутри резко повысившимся давлением. Космос — это идеальный вакуум, а в организме человека поддерживается давление приблизительно в одну атмосферу. На первый взгляд может показаться, что такого резонанса вполне достаточно для того, чтобы живое существо мгновенно погибло от «взрыва».

На самом деле, никакого «взрыва» не произойдет — ткани тела характеризуются достаточной прочностью и способны справиться с давлением в одну атмосферу. Вместо ожидаемой реакции происходит совсем другое: лопаются капилляры, которые снабжают кровью кожные покровы, это достаточно неприятное явление, однако вовсе не смертельное.

Еще одна причина, из-за которой человек может очень быстро погибнуть в открытом пространстве Вселенной — сама температура Космоса, которая, по некоторым данным достигает абсолютного нуля по Кельвину (-273,15 °С). Если говорить точнее, так думают люди, ничего не знающие о температурных особенностях межпланетного пространства. Температура в открытом Космосе, как это ни странно звучит – это отсутствие всякой температуры. Космическое пространство, по данным исследователей, не имеет температуры, соответственно, оно никак не может ни нагреть, ни охладить, находящийся в нем живой организм.

Что традиционно подразумевается под таким термином, как «температура»? Во-первых - хаотичное движение атомов или молекул, из которых состоят абсолютно все тела. Чем интенсивнее двигаются молекулы, тем, соответственно, выше показатель термометра. Там, где вещества как такового нет, не может идти и речи и о таком понятии, как температура. Космическое пространство — является как раз таким местом, где материи очень мало. Поэтому и говорят, что температура в Космосе – это полное ее отсутствие. Однако тела, которые находятся в межпланетном пространстве, имеют самые разные тепловые показатели, которые зависят от множества всевозможных параметров.

Космическое пространство наполнено излучением источников, имеющих самую разнообразную интенсивность и частоту. И температура в Космосе, с этой точки зрения, понимается как суммарная энергия излучения в определенном месте пространства.

Термометр в открытом космическом пространстве сначала будет показывать ту температуру, которая была характерна для среды, из которой его извлекли, к примеру, из внутреннего пространства космического корабля. Со временем прибор нагреется, причем очень сильно. Ведь в условиях, где имеет место конвективный теплообмен, предметы, лежащие под прямыми солнечными лучами, нагреваются достаточно сильно, так, что к ним невозможно притронуться. В Космосе такой нагрев будет гораздо сильнее, так как вакуум – это идеальный теплоизолятор.

Таким образом, температура в Космосе - понятие относительное, однако в зависимости от того, в какой точке пространства находится тело, оно может нагреваться либо охлаждаться. Вдали от звезд, там, куда практически не проникают тепловые потоки, температура такого тела будет равна приблизительно 2,725 градусам Кельвина, так как реликтовое излучение распространяется во всей известной астрономам части Вселенной, однако при приближении тела к какой-либо звезде она будет постепенно увеличиваться.

fb.ru

Факты о космосе, в которые трудно поверить / Хабр

1 апреля принято всех обманывать или подшучивать, но я пойду против традиции. Даже в этот день я не могу позволить себе обман читателей. Поэтому расскажу о реальных фактах, которые вызвали мое удивление. Разумеется, для кого-то эти факты не станут новостью, но, надеюсь, хоть что-то сможет заинтересовать каждого. И еще надеюсь, что многие, подобно мне, и вопреки заветам Шерлока Холмса, тащат в свой мозговой чердак не только нужное, но и просто интересное. Буду рад, если эта первоапрельская подборка заставит кого-нибудь забраться поглубже в источники и перепроверить мои заявления.
Температура в космосе, на орбите Земли равна +4°С

Если быть точным, то не на орбите Земли, а на расстоянии от Солнца равному удаленности орбиты Земли. И для абсолютно черного тела, т.е. такого, которое полностью поглотит солнечные лучи, ничего не отразив обратно.

Считается, что температура в космосе стремится к абсолютному нулю. Во-первых, это не совсем так, поскольку вся известная Вселенная нагрета до 3 К, реликтовым излучением. Во-вторых, вблизи от звезд температура повышается. А мы обитаем довольно близко к Солнцу. Сильная теплозащита нужна скафандрам и космическим кораблям потому, что они входят в тень Земли, и наше светило уже не может их согревать до указанного +4°С. В тени температура может опускаться до -160° С, например ночью на Луне. Это холодно, но до абсолютного нуля еще далеко.

Вот, для примера, показания бортового термометра спутника TechEdSat, который вращался на низкой околоземной орбите:

На него оказывала влияние еще и земная атмосфера, но в целом график демонстрирует не те ужасные условия, которые принято представлять в космосе.

На Венере местами идет свинцовый снег

Это, наверно, самый поразительный факт о космосе, который я узнал не так давно. Условия на Венере настолько отличаются от всего, что мы могли бы вообразить, что венериане спокойно могли бы летать в земной ад, чтобы отдохнуть в мягком климате и комфортных условиях. Поэтому, как бы ни казалась фантастической фраза “свинцовый снег”, для Венеры — это реальность.

Благодаря радару американского зонда Magellan вначале 90-х, ученые обнаружили на вершинах венерианских гор некое покрытие, обладающее высокой отражающей способностью в радиодиапазоне. Поначалу предполагалось несколько версий: последствие эрозии, отложение железосодержащих материалов и т.п. Позже, после нескольких экспериментов на Земле, пришли к выводу, что это самый натуральный металлический снег, состоящий из сульфидов висмута и свинца. В газообразном состоянии они выбрасываются в атмосферу планеты во время извержений вулканов. Затем термодинамические условия на высоте 2600 м способствуют конденсации соединений и выпадению на возвышенностях.

В Солнечной системе 13 планет… или больше

Когда Плутон разжаловали из планет, правилом хорошего тона стало знание, что в Солнечной системе всего восемь планет. Правда, при этом же, ввели новую категорию небесных тел — карликовые планеты. Это “недопланеты”, которые имеют округлую (или близкую к ней) форму, не являются ничьими спутниками, но, при этом не могут очистить собственную орбиту от менее массивных конкурентов. Сегодня считается, что таких планет пять: Церера, Плутон, Ханумеа, Эрида и Макемаке. Ближайшая к нам — Церера. Через год мы узнаем о ней намного больше чем сейчас, благодаря зонду Dawn. Пока знаем только, что она покрыта льдом и с двух точек на поверхности у нее испаряется вода со скоростью 6 литров в секунду. О Плутоне тоже узнаем в следующем году, благодаря станции New Horizons. Вообще, как 2014 год в космонавтике станет годом комет, 2015 год обещает стать годом карликовых планет.

Остальные карликовые планеты находятся за Плутоном, и какие-либо подробности о них мы узнаем не скоро. Буквально на днях нашли еще одного кандидата, правда официально его в список карликовых планет не включили, так же как и его соседку Седну. Но не исключено, что найдут еще, несколько более крупных карликов, поэтому число планет в Солнечной системе еще вырастет.

Телескоп Hubble — не самый мощный

Благодаря колоссальному объему снимков и впечатляющим открытиям, совершенным телескопом Hubble, у многих существует представление, что этот телескоп обладает самым высоким разрешением и способен увидеть такие детали, которые не увидеть с Земли. Какое-то время так и было: несмотря на то, что на Земле можно собрать большие зеркала на телескопах, существенное искажение в изображения вносит атмосфера. Поэтому даже “скромное” по земным меркам зеркало диаметром 2,4 метра в космосе, позволяет добиться впечатляющих результатов.

Однако, за годы, прошедшие с момента запуска Hubble и земная астрономия не стояла на месте, было отработано несколько технологий, позволяющих, если не полностью избавиться от искажающего действия воздуха, то существенно снизить его воздействие. Сегодня самое впечатляющее разрешение способен дать Very Large Telescope Европейской Южной обсерватории в Чили. В режиме оптического интерферометра, когда вместе работают четыре основных и четыре вспомогательных телескопа, возможно достичь разрешающей способности превышающей возможности Hubble примерно в пятьдесят раз.

К примеру, если Hubble дает разрешение на Луне около 100 метров на пиксель (привет всем, кто думает, что так можно рассмотреть посадочные аппараты Apollo), то VLT может различить детали до 2 метров. Т.е. в его разрешении американские спускаемые аппараты или наши луноходы выглядели бы как 1-2 пикселя (но смотреть не будут из-за чрезвычайно высокой стоимости рабочего времени).

Пара телескопов обсерватории Keck, в режиме интерферометра, способны превысить разрешение Hubble в десять раз. Даже по отдельности, каждый из десятиметровых телескопов Keck, используя технологию адаптивной оптики, способны превзойти Hubble примено в два раза. Для примера фото Урана:

Впрочем Hubble без работы не остается, небо большое, а широта охвата камеры космического телескопа превышает наземные возможности. А для наглядности можно посмотреть сложноватый, но информативный график.

Медведи в России встречаются в 19 раз чаще чем астероиды в Главном астероидном поясе

Американский научно популярный сайт приводит, а Компьютерра переводит любопытные расчеты, которые показывают, что путешествие в поясе астероидов не так опасно как представлялось Джорджу Лукасу. Если все астероиды крупнее 1 метра расположить на плоскости, равной площади Главного астероидного пояса то получится, что одна каменюка приходится примерно на 3200 квадратных километров. 100 тыс. медведей России должны распределяться по штуке на каждые 170 квадратных километров территории. Разумеется и астероиды и медведи стараются держаться ближе к себеподобным и оскверняют чистую математику своим неравномерным распределением, но ради праздника такими мелочами можно пренебречь.

habr.com

Какая температура в космосе?

Температура − это характеристика термодинамической системы, а что такое термодинамическая система? Посмотрите на рисунок

Как видно из рисунка, нам нужно определить границы термодинамической системы или границы области измерения температуры. Это может быть объём, ограниченный радиусом наблюдаемой Вселенной. Тогда температура Вселенной будет иметь один смысл − усредненная по всему объёму наблюдаемой Вселенной, температура.

Избежать сложной процедуры усреднения можно, для начала взяв мысленно некоторую ограниченную область пространства в космосе и измерив там температуру. Сказано − сделано. Найдем место, наиболее удаленное от всех галактик. Таких мест во Вселенной много и называются они Войды (Пустоты − Voids). Выберем в одном из них область радиусом ~100 Мпс (мысленно конечно) и "установим" в центре термометр. Для точного измерения надо конечно подождать немножко − не многим более несколько тысяч лет (чем дольше, тем точнее будет измерение). И вот после этого наш термометр покажет температуру 2,725° выше Абсолютного нуля или 2,725° К или −270,425 °C. Это температура реликтового излучения, заполняющего практически однородно и изотропно всю Вселенную. 

Займёмся теперь усреднением температуры наблюдаемой Вселенной. Очевидно, что она не может быть меньше температуры Реликтового излучения. Доля энергии Вселенной, приходящей на звёзды и высокотемпературный газ, вносящие прямой вклад в температуру Вселенной, известна, она мала и составляет около 0.4%. Малость вклада в среднее значение определяется также и 1/r² зависимостью потока энергии их излучения. Темная энергия и холодная темная материя, составляющие 96% энергии Вселенной, по определению не участвуют в формировании температуры (во всяком случае их вклад неизвестен). Остаётся 3,6% энергии не светящейся материи, заключённой в основном в гигантских галактических молекулярных облаках. Оценим их вклад относительно реликтового излучения. Температура таких облаков составляет 10 ÷ 100 К при плотности 10² ÷ 10³ частиц/см³. Это соответствует плотности энергии 4,4×10⁻²¹ Дж/м³, и учитывая средние скорости молекул ~2 км/сек (в основном H₂), получим мощность тепловой энергии, приходящей на единичную площадку термометра, ~3×10⁻⁹ Вт/м². Мощность же энергия реликтового излучения на единичной площадке, известна и равна 1,2×10⁻⁵ Вт/м², что более чем на 3 порядка выше. Таким образом получается, что за температуру Вселенной ответственно в основном реликтовое излучение − эхо Большого Взрыва.

Какая температура в космосе?  Ответ: Очень холодно, Т = 2,725° К.

thequestion.ru