Инженерный калькулятор онлайн с самыми точными расчетами! Степень в калькулятор


Калькулятор степеней - возвести в степень онлайн

Калькулятор помогает быстро возвести число в степень онлайн. Основанием степени могут быть любые числа (как целые, так и вещественные). Показатель степени также может быть целым или вещественным, и также как положительным, так и отрицательным. Следует помнить, что для отрицательных чисел возведение в нецелую степень не определено и потому калькулятор сообщит об ошибке в случае, если вы всё же попытаетесь это выполнить.

Что такое натуральная степень числа?

Число p называют n-ой степенью числа a, если p равно числу a, умноженному само на себя n раз: p = an = a·...·an - называется показателем степени, а число a - основанием степени.

Как возвести число в натуральную степень?

Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:

Пример 1. Возвести число три в четвёртую степень. То есть необходимо вычислить 34Решение: как было сказано выше, 34 = 3·3·3·3 = 81.Ответ: 34 = 81.

Пример 2. Возвести число пять в пятую степень. То есть необходимо вычислить 55Решение: аналогично, 55 = 5·5·5·5·5 = 3125.Ответ: 55 = 3125.

Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n раз.

Что такое отрицательная степень числа?

Отрицательная степень -n числа a — это единица, поделённая на a в степени n: a-n = .

При этом отрицательная степень существует только для отличных от нуля чисел, так как в противном случае происходило бы деление на ноль.

Как возвести число в целую отрицательную степень?

Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.

Пример 1. Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2-4

Решение: как было сказано выше, 2-4 = = = 0.0625.

Ответ: 2-4 = 0.0625.

programforyou.ru

Калькулятор степеней онлайн: формула, примеры с решением

Возведение в степень — это арифметическая операция повторяющегося умножения. Если требуется перемножить число n-ное количество раз, то достаточно возвести его в n-ную степень.

Основные действия со степенями

В первую очередь степень — это повторяющееся умножение. Число 134 — это 13 × 13 × 13 × 13, где перемножаются четыре одинаковых сомножителя. Если умножить 134 на 132, то мы получим (13 × 13 × 13 × 13) × (13 × 13), что логично превращается в 136. Это и есть первое правило возведения в степень, которое гласит: при умножении чисел, возведенных в степень, их показатели суммируются. Математически это записывается как:

am × an = a(m+n).

Если разделить 134 на 132, то нам потребуется вычислить дробь вида:

(13 × 13 × 13 × 13) / (13 × 13).

Мы можем просто сократить числа в числителе и знаменателе, и в результате останется 13 × 13 = 132. Очевидно, деление чисел, возведенных в степень, соответствует вычитанию их показателей. Второе правило действий со степенями математически выглядит так:

am / an = a(m – n).

Теперь давайте возведем 114 в куб, то есть в третью степень. Для этого нам потребуется вычислить выражение (11 × 11 × 11 × 11) × (11 × 11 × 11 × 11) × (11 × 11 × 11 × 11). Получилось 12 сомножителей, следовательно, при возведении в n-ную степень числа в степени m, показатели перемножаются. Третье правило записывается так:

(am)n = a(m × n).

Это основные правила работы со степенными выражениями. Однако число можно возвести в отрицательную степень, дробную и нулевую. Какой результат даст выражение 150? Давайте воспользуемся вторым правилом действий степенями и попробуем разделить 154 на 154, что запишется как дробь:

154 / 154.

Очевидно, что в числителе и знаменателе стоят одни и те же числа, а когда число делится само на себя, оно превращается в единицу. Но согласно правилу действий со степенными числами это будет эквивалентно 150. Следовательно:

154 / 154 = 150 = 1.

Таким образом, четвертое правило гласит, что любое положительное число в нулевой степени равняется единице. Выглядит это правило так:

a0 = 1.

При помощи второго правила легко объяснить и работу с отрицательными степенями. К примеру, давайте разделим 82 на 84 и запишем выражение в виде дроби.

(8 × 8) / (8 × 8 × 8 × 8).

Мы можем сократить две восьмерки в числителе и знаменателе и преобразовать дробь в 1 / (8 × 8). Но согласно правилу в ответе мы должны получить 8-2. В знаменателе у нас как раз стоит восьмерка в квадрате. Таким образом:

a-m = 1 / am

При этом для значения -1 правило трансформируется в элегантную формулу:

a-1 = 1 / a.

И последнее правило, которое пригодится вам при работе со степенными функциями, гласит о дробных степенях. Что мы можем сделать с выражением 7(1/2). Очевидно, что возвести его в квадрат, и тогда по третьему правилу в результате у нас останется только семерка. Степень 1/2 — это извлечение квадратного корня, так как при возведении его в квадрат мы получаем целое число. Степень 1/3 соответствует извлечению кубического корня, но как быть с показателем 2/3? Логично, что это кубический корень из числа, возведенного в квадрат. Последнее правило гласит, что знаменатель дробного показателя означает извлечение корня, а числитель — возведение в степень. Математически это выглядит как:

a(m/n) есть корень n-ной степени из am.

Теперь вы знаете, как проводить любые арифметические операции со степенными выражениями.

Вы можете использовать наш калькулятор для вычисления степенных функций. Программа позволяет определить основание, показатель и результат операции. Кроме того, калькулятор сопровождается иллюстрацией графика функций: параболы, кубической параболы и параболы в n-ной степени. Рассмотрим пару примеров.

Примеры из реальной жизни

Депозит в банке

Если мы положим на банковский депозит $1 000 под годовую ставку в размере 9% годовых, то сколько денег на счету будет через 20 лет? Рост с течением времени рассчитываются по экспоненциальной формуле вида:

Рост = a × e(kt),

где a – начальное значение, e – константа, равная 2,718; k – коэффициент роста; t – время.

Для решения банковской задачи нам потребуется возвести 2,718 в степень, равную 20 × 0,09 = 1,8. Воспользуемся нашим калькулятором и введем в ячейку «Число, x =» значение 2,718, а в ячейку «Степень, n =» значение 1,8. Мы получим ответ, равный 6,049. Теперь, для подсчета суммы на банковском счету нам необходимо умножить начальное значение $1 000 на прирост в размере 6,049. В итоге, через 20 лет на депозите будет $6 049.

Школьная задача

Пусть в школьной задаче требуется построить график функции y = x2,5. Это алгебраическая задача, для решения которой требуется задаться тремя значениями «x» и вычислить соответствующие ему значения «y». После чего по найденным точкам построить график функции. Введите в ячейку «Степень, n =» значение 2,5. После этого последовательно рассчитайте значения «y», вводя в «Число, x =» аргументы 1, 2, 3. Вы получите соответствующие значения функции 1; 5,657; 15,588. Вам останется только нарисовать кривую по найденным точкам.

Заключение

Возведение в степень — арифметическая операция последовательного умножения. Степени имеют больше значение в прикладных науках, так как большинство реальных процессов описываются при помощи степенных функций. Используйте наш калькулятор для расчетов любых практических или школьных задач.

bbf.ru

показатель и основание степени. Онлайн калькулятор

Степень с натуральным показателем

Произведение, в котором все множители одинаковые, можно записывать короче:

4 · 4 · 4 = 43

Выражение 43 (а также результат его вычисления) называется степенью.

Степень – это краткая запись произведения одинаковых сомножителей.

Число, показывающее количество одинаковых сомножителей, называют показателем степени. Возводимое в степень число называют основанием степени:

Запись 43 читается так: четыре в степени три или четыре в третьей степени.

Степенью числа a с натуральным показателем n (где n > 1) называют произведение n множителей, каждый из которых равен a.

Пример 1. Вычислим 24:

Пример 2. Вычислим 37:

Если какое-нибудь число берётся сомножителем 2 раза, то произведение называется второй степенью этого числа, если какое-нибудь число берётся сомножителем 3 раза, то произведение называется третьей степенью этого числа и т. д. Например, произведение 16 из первого примера – это четвёртая степень числа 2.

Первой степенью числа называют само это число. Например, 21 = 2, 51 = 5, 1001 = 100, т. е. первая степень любого числа равна самому числу:

a1 = a

Вторую степень числа называют иначе квадратом числа. Например, запись 52 читают пять в квадрате. Третью степень числа называют иначе кубом числа. Например, запись 53 читают пять в кубе. Эти названия заимствованы из геометрии.

Возведение в степень – это вычисление значения степени. Например, если стоит задача вычислить значение степени 35, то её можно переформулировать так: возвести число 3 в пятую степень.

Пример: вычислить значение степени 35.

Решение: данная степень равна произведению: 3 · 3 · 3 · 3 · 3. Перемножаем сомножители и получаем ответ: 243.

Ответ: 35 = 243.

Степень часто используют для записи очень больших или очень малых чисел. Например, скорость света, которая примерно равна 300 000 000 (триста миллионов) метров в секунду удобнее записывать так: 3 · 108 м/с.

Степень можно использовать для представления разрядной единицы в виде степени:

399 = 3 · 100 + 9 · 10 + 9 · 1 = 3 · 102 + 9 · 101 + 9 · 1

Также степень часто используют в записи разложения числа на простые множители:

1000 = 23 · 53

Калькулятор возведения в степень

Данный калькулятор поможет вам выполнить возведение в степень. Просто введите основание с показателем степени и нажмите кнопку Вычислить.

naobumium.info

Возведение в степень и извлечение корня из числа онлайн.

Корень нечётной степени из положительного числа

В результате вычисления корня нечётной степени из положительного числа будет положительное число: .

Пример Вычислим корни нечётной степени из 8, 27, 125, 243

Корни 3 степени также называют кубическими корнями.

В результате вычисления корней 5-ой степени из положительных чисел, получили также положительные числа.

Корень нечётной степени из отрицательного числа

В результате вычисления корня нечётной степени из отрицательного числа будет отрицательное число: .

Пример Найдем корни 3 и 5 степеней из отрицательных чисел.
Корень четной степени из положительного числа

Корень чётной степени из положительного числа имеет два значения, положительное и отрицательное: .

Пример Вычислим корни 2 и 4 степени.

Корень 2-й степени называют квадратный корнем.

Корень четной степени из отрицательного числа

Корень четной степени из отрицательного числа не существует для вещественных чисел.

Корень любой степени из нуля

calcs.su

Возведение в степень - онлайн калькулятор, секретные примеры, игры

Возведение в степень – операция, тесно связанная с умножением, это операция – результат многократного умножения какого-либо числа на само себя. Изобразим формулой: a1 * a2 * … * an = an.

Например, а=2, n=3: 2 * 2 * 2=2^3 = 8.

Вообще возведение в степень часто используется в различных формулах по математике и физике. Эта функция имеет более научное предназначение, чем четыре основные: Сложение, Вычитание, Умножение, Деление.

Возведение числа в степень

Возведение числа в степень – операция не сложная. Оно связано с умножением подобно связи умножения и сложения. Запись an – краткая запись n-ого количество чисел «а» умноженных друг на друга.

Рассмотри возведение в степень на самых простых примерах, переходя к сложным.

Например, 42. 42 = 4 * 4 = 16. Четыре в квадрате (во второй степени) равно шестнадцати. Если вам не понятно умножение 4 * 4, то читайте нашу стать об умножении.

Рассмотрим еще одни пример: 5^3. 5^3 = 5 * 5 * 5 = 25 * 5 = 125. Пять в кубе (в третьей степени) равно ста двадцати пяти.

Еще один пример: 9^3. 9^3 = 9 * 9 * 9 = 81 * 9 = 729. Девять в кубе равняется семи сотням двадцати девяти.

Формулы возведения в степень

Чтобы грамотно возводить в степень нужно помнить и знать формулы, указанные ниже. В этом нет ничего сверх естественного, главное понять суть и тогда они не только запомнятся, но и покажутся легкими.

Возведение одночлена в степень

Что из себя представляет одночлен? Это произведение чисел и переменных в любом количестве. Например, двух – одночлен. И вот именно о возведении в степень таких одночленов данная статья.

Пользуясь формулами возведения в степень вычислить возведение одночлена в степень будет не трудно.

Например, (3x^2y^3)^2= 3^2 * x^2 * 2 * y^(3 * 2) = 9x^4y^6; Если возводить одночлен в степень, то в степень возводится каждая составная одночлена.

Возводя в степень переменную уже имеющую степень, то степени перемножаются. Например, (x^2)^3 = x^(2 * 3) = x^6;

Возведение в отрицательную степень

Отрицательная степень – обратное число. Что такое обратное число? Любому числу Х обратным будет 1/X. То есть Х-1=1/X. Это и есть суть отрицательной степени.

Рассмотрим пример (3Y)^-3:

(3Y)^-3 = 1/(27Y^3).

Почему так? Так как в степени имеется минус, то просто переносим в знаменатель данное выражение, а затем возводим в его в третью степень. Просто не так ли?

Возведение в дробную степень

Начнем рассмотрение вопрос на конкретном примере. 43/2. Что означает степень 3/2? 3 – числитель, означает возведение числа (в данном случае 4) в куб. Число 2 – знаменатель, это извлечение корня второй степени из числа (в данном случае 4).

Тогда получаем квадратный корень из 43 = 2^3 = 8. Ответ: 8.

Итак, знаменатель дробной степени может быть, как 3, так и 4 и до бесконечности любым числом и это число определяет степень квадратного корня, извлекаемого из заданного числа. Конечно же, знаменатель не может быть равным нулю.

Возведение корня в степень

Если корень возводится в степень, равной степени самого корня, то ответом будет подкоренное выражение. Например, (√х)2 = х. И так в любом случае равенства степени корня и степени возведения корня.

Если (√x)^4. То (√x)^4=x^2. Чтобы проверить решение переведем выражение в выражение с дробной степенью. Так как корень квадратный, то знаменатель равен 2. А если корень возводится в четвертую степень, то числитель 4. Получаем 4/2=2. Ответ: x = 2.

В любом случае лучший вариант просто перевести выражение в выражение с дробной степенью. Если не будет сокращаться дробь, значит такой ответ и будет, при условии, что корень из заданного числа не выделяется.

Возведение в степень комплексного числа

Что такое комплексное число? Комплексное число – выражение, имеющее формулу a + b * i; a, b – действительные числа. i – число, которое при возведение в квадрат дает число -1.

i^2=-1.

Рассмотрим пример. (2 + 3i)^2.

(2 + 3i)^2 = 22 +2 * 2 * 3i +(3i)^2 = 4+12i^-9=-5+12i.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Возведение в степень онлайн

С помощью нашего калькулятора, Вы сможете посчитать возведение числа в степень:

Загрузка калькулятора...

Возведение в степень 7 класс

Возведение в степень начинают проходить школьники только в седьмом классе.

Возведение в степень – операция, тесно связанная с умножением, это операция – результат многократного умножения какого-либо числа на само себя. Изобразим формулой: a1 * a2 * … * an=an.

Например, а=2, n=3: 2 * 2 * 2 = 2^3 = 8.

Примеры для решения:

Возведение в степень презентация

Презентация по возведению в степень, рассчитанную на семиклассников. Презентация может разъяснить некоторые непонятные моменты, но, вероятно, таких моментов не будет благодаря нашей статье.

Скачать презентацию

Итог

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

cepia.ru

Инженерный калькулятор онлайн KALKPRO.RU - самый точный калькулятор корней, степеней, синусов, косинусов, логарифмов!

Почему мы так решили? Наш онлайн калькулятор оперирует числами вплоть до 20 знаков после запятой, в отличие от других. Kalkpro.ru способен точно и достоверно совершить любые вычислительные операции, как простые, так и сложные.

Только корректные расчеты по всем правилам математики!

В любой момент и в любом месте под рукой, универсальный инженерный калькулятор онлайн выполнит для вас любую операцию абсолютно бесплатно, практически мгновенно, просто добавьте программу в закладки.

Всё для вашего удобства:

  • быстрые вычисления и загрузка,
  • верные расчеты по всем правилам,
  • полный функционал,
  • понятный интерфейс,
  • адаптация под любой размер устройства
  • бесплатно
  • не надо ничего устанавливать,
  • никакой всплывающей назойливой рекламы,
  • подробная инструкция с примерами

Содержание справки:

1. Комплекс операций инженерного калькулятора

2. Инструкция по функциям инженерного калькулятора

3. Как пользоваться инженерным калькулятором – на примерах

4. Тригонометрический калькулятор онлайн - примеры

Комплекс операций инженерного калькулятора

Встроенный математический калькулятор поможет вам провести самые простые расчеты: умножение и суммирование, вычитание, а также деление. Калькулятор степеней онлайн быстро и точно возведет любое число в выбранную вами степень.

Представленный инженерный калькулятор содержит в себе все возможные вариации онлайн программ для расчетов. Kalkpro.ru содержит тригонометрический калькулятор (углы и радианы, грады), логарифмов (Log), факториалов (n!), расчета корней, синусов и арктангенсов, косинусов, тангенсов онлайн – множество тригонометрический функций и не только.

Работать с вычислительной программой можно онлайн с любого устройства, в каждом случае размер интерфейса будет подстраиваться под ваше устройство, либо вы можете откорректировать его размер на свой вкус.

Ввод цифр производится в двух вариантах:

  • с мобильных устройств – ввод с дисплеем телефона или планшета, клавишами интерфейса программы
  • с персонального компьютера – с помощью электронного дисплея интерфейса, либо через клавиатуру компьютера любыми цифрами

Инструкция по функциям инженерного калькулятора

Для понимания возможностей программы мы даем вам краткую инструкцию, более подробно смотрите в примерах вычислений онлайн. Принцип работы с научным калькулятором такой: вводится число, с которым будет производиться вычисление, затем нажимается кнопка функции или операции, потом, если требуется, то еще цифра, например, степень, в конце - знак равенства.

  • [Inv] – обратная функция для sin, cos, tan, переключает интерфейс на другие функции
  • [Ln] – натуральный логарифм по основанию «e»
  • [ ( ] и [ ) ] - вводит скобки
  • [Int] – отображает целую часть десятичного числа
  • [Sinh] - гиперболический синус
  • [Sin] – синус заданного угла
  • [X2] – возведение в квадрат (формула x^2)
  • [n!] - вычисляет факториал введенного значения - произведение n последовательных чисел, начиная с единицы до самого введенного числа, например 4!=1*2*3*4, то есть 24
  • [Dms] – переводит из десятичного вида в формат в градусы, минуты, секунды.
  • [Cosh] - гиперболический косинус
  • [Cos] – косинус угла
  • [xy] – возведение икса в степ. игрик (формула x^y)
  • [y√x] – извлечение корня в степени y из икс
  • [Pi] – число Пи, выдает значение Pi для расчетов
  • [tanh] - гиперболический тангенс
  • [tan] – тангенс угла онлайн, tg
  • [X3] - помогает возвести в степень 3, в куб (формула x^3)
  • [3√x] - извлечь корень кубический
  • [F – E] - переключает ввод чисел в экспоненциальном представлении и обратно
  • [Exp] - позволяет вводить данные в экспоненциальном представлении.
  • [Mod] - позволяет нам вычислить остаток от деления одного числа на другое
  • [Log] – рассчитывает десятичный логарифм
  • [10^x] – возведение десяти в произвольную степень
  • [1/X] - подсчитывает обратную величину
  • [e^x] – Возведение числа Эйлера в степень
  • [Frac] – отсекает целую часть, оставляет дробную
  • [sinh-1] – обратный гиперболический синус
  • [sin-1] – арксинус или обратный синус, arcsin или 1/sin
  • [deg] – перевод угла в градусах, минутах и секундах в десятичные доли градуса, подробнее
  • [cosh-1] - обратный гиперболический косинус
  • [cos-1] – аркосинус или обрат. косинус arccos или 1/cos
  • [2*Pi] – рассчитывает число Пи, помноженное на два
  • [tanh-1] – обрат. гиперболический тангенс
  • [tan-1] – арктангенс или обратный тангенс, arctg

Как пользоваться MR MC M+ M- MS

Как пользоваться инженерным калькулятором – на примерах

Как возвести в степень

Чтобы возвести, к примеру, 12^3 вводите в следующей последовательности:

12 [xy] 3 [=]

12, клавиша «икс в степени игрик» [xy], 3, знак равенства [=]

Ответ: 1728

Как найти корень кубический

Допустим, что мы извлекаем корень кубический из 729, нажмите в таком порядке:

729 [3√x] [=]

729, [3√x] «кубический корень из икс», равенства [=]

Как найти корень на калькуляторе

Задача: Найти квадратный корень 36.

Решение: всё просто, нажимаем так:

36 [y√x] 2 [=]

36, [y√x] «корень из икса, в степени игрик», нужную нам степень 2, равно [=]

Ответ: 6

При помощи этой функции вы можете найти корень в любой степени, не только квадратный.

Как возвести в квадрат

Для возведения в квадрат онлайн вычислительная программа содержит две функции:

[xy] «икс в степени игрик», [X2] «икс в квадрате»

Последовательность ввода данных такая же, как и раньше – сначала исходную величину, затем «x^2» и знак равно, либо если не квадрат, а произвольное число, необходимо нажать функцию «x^y», затем указать необходимую степень и так же нажать знак «равно».

Например: 45 [xy] 6 [=]

Ответ: сорок пять в шестой степ. равно 8303765625

Тригонометрический калькулятор онлайн - примеры

Как произвести онлайн расчет синусов и косинусов, тангенсов

Обратите внимание, что kalkpro.ru способен оперировать как градусами, так радианами и градами.

1 рад = 57,3°; 360° = 2π рад., 1 град = 0,9 градусов или 1 град = 0,015708 радиан.

Для включения того или иного режима измерения нажмите нужную кнопку:

где Deg – градусы, Rad – измерение в радианах, Grad - в градах. По умолчанию включен режим расчета в градусах.

В качестве самого простого примера найдем синус 90 градусов. Нажмите:

90 [sin] [=]

Ответ: единица

Также рассчитываются и другие тригонометрические функции, например, вычислим косинус 60 °:

60 [cos] [=]

Решение: 0,5

Аналогичным способом вычисляются обратные тригонометрические функции онлайн на КАЛКПРО - арксинус , арккосинус, арктангенс, а также гиперболические функции sinh, cosh, tanh.

Для их ввода необходимо переключить интерфейс, нажав [Inv], появятся новые кнопки – asin, acos, atan. Порядок ввода данных прежний: сначала величину, затем символ нужной функции, будь то акрсинус или арккосинус.

Преобразование с кнопкой Dms и Deg на калькуляторе

[Deg] позволяет перевести угол из формата градусы, минуты и секунды в десятичные доли градуса для вычислений. [Dms] производит обратный перевод – в формат «градусы; минуты; секунды».

Например, угол 35 o 14 минут 04 секунды 53 десятые доли секунды переведем в десятые доли:

35,140453 [Deg] [=] 35,23459166666666666666

Переведем в прежний формат: 35,23459166666666666666 [Dms] [=] 35,140453

Десятичный логарифм онлайн

Десятичный логарифм на калькуляторе рассчитывается следующим образом, например, ищем log единицы по основанию 10, log10(1) или lg1:

1 [log] [=]

Получается 0 в итоге. Для подсчета lg100 нажмем так:

100 [log] [=]

Решение: два. Как себя проверить? Что вообще такое десятичный логарифм - log по основанию 10. В нашем примере 2 – это степень в которую необходимо ввести основание логарифма, то есть 10, чтобы получить 100.

Так же вычисляется натуральный логарифм, но кнопкой [ln].

Как пользоваться памятью на калькуляторе

Существующие кнопки памяти: M+, M-, MR, MS, MC.

Добавить данные в память программы, чтобы потом провести с ними дальнейшие вычисления поможет операция MS.

MR выведет вам на дисплей сохраненную в памяти информацию. MC удалит любые данные из памяти. M- вычтет число на онлайн дисплее из запомненного в памяти.

Пример. Внесем сто сорок пять в память программы:

145 [MR]

После проведения других вычислений нам внезапно понадобилось вернуть запомненное число на экран электронного калькулятора, нажимаем просто:

[MR]

На экране отобразится снова 145.

Потом мы снова считаем, считаем, а затем решили сложить, к примеру, 85 с запомненным 145, для этого нажимаем [M+], либо [M-] для вычитания 85 из запомненного 145. В первом случае по возвращению итогового числа из памяти кнопкой [MR] получится 230, а во втором, после нажатия [M-] и [MR] получится 60.

Инженерный калькулятор kalkpro.ru быстро и точно проведет сложные вычисления, значительно упрощая ваши задачи.

  

Перечень калькуляторов и функционал будет расширяться, просто добавьте сайт в закладки и расскажите друзьям!

kalkpro.ru

Математический калькулятор с расширенными возможностями.

Математический калькулятор онлайн

Незаменимый помощник для студентов и инженеров, позволяющий производить вычисления начиная с элементарной линейной математики и заканчивая дифференциальными исчислениями и основами метафизики. Расчет тригонометрических функций, логарифмов, факториалов, решение квадратных уравнений в поле комплексных чисел, вычисления биномиальных коэффициентов, расчет матриц, конвертация величин и построение графиков.

Стильный интерфейс бесплатного математического калькулятора прост и понятен, его не нужно устанавливать на компьютер, достаточно зайти на нашу страничку и можно комфортно им пользоваться.

Удобный и простой инженерный калькулятор с богатым арсеналом возможностей для математических расчетов и между тем с приятным и понятным интерфейсом, способен выполнять практически любые арифметические действия и сложные математические вычисления.

Инженерный калькулятор позволяет использовать много разных математических функций: • решение гиперболических, тригонометрических и обратных тригонометрических функций: • возведение в степень и извлечение корней: • решение матриц и уравнений: • построение графиков и конвертертация величин: • вычисление логарифмов и экспоненты: • дифференцирование и интегрирование функций: • нахождение факториала, абсолютной величины числа, значения аргумента функции, биноминального коэффициента, наибольшего общего делителя, наименьшего общего кратного: • Использование мнимой единицы при расчётах комплексных чисел: • Выделение целой действительной части и исключение действительной части: • Разложение числа на простые множители.

Инженерный калькулятор позволяет конвертировать физические величины разных систем измерений (масса, расстояние, время, компьютерные информационные единицы измерения и др. С возможностями нашего калькулятора вы сможете моментально перевести фунты в килограммы, мили в километры, секунды в часы и т.д.

Для выполнения математических расчетов, просто введите последовательность математических выражений в соответствующее поле и для получения результата нажмите на кнопку со знаком равенства.

Для построения графиков достаточно в поле ввода с помощью панели инструментов записать функцию и нажать на кнопку с изображением графика. Кнопка с надписью Unit предназначена для перехода в конвертер величин, для вычисления матриц нажмите на кнопку Matrix. В таблице указаны все клавиши (со значком * вызывается через дополнительную клавишу II) калькулятора и выполняемые ими операции.

Клавиша Символ Операция
pi pi Постоянная pi
е е Число Эйлера
% % Процент
( ) ( ) Открыть/Закрыть скобки
, , Запятая
sin sin(α) Синус угла
cos cos(β) Косинус
tan tan(y) Тангенс
sinh sinh() Гиперболический синус
cosh cosh() Гиперболический косинус
tanh tanh() Гиперболический тангенс
sin-1 asin() Обратный синус
cos-1 acos() Обратный косинус
tan-1 atan() Обратный тангенс
sinh-1 asinh() Обратный гиперболический синус
cosh-1 acosh() Обратный гиперболический косинус
tanh-1 atanh() Обратный гиперболический тангенс
x2 ^2 Возведение в квадрат
х3 ^3 Возведение в куб
xy ^ Возведение в степень
10x 10^() Возведение в степень по основанию 10
ex exp() Возведение в степень числа Эйлера
√x sqrt(x) Квадратный корень
3√x sqrt3(x) Корень 3-ей степени
y√x sqrt(x,y) Извлечение корня
log2x log2(x) Двоичный логарифм
log log(x) Десятичный логарифм
ln ln(x) Натуральный логарифм
logyx log(x,y) Логарифм
I / II Сворачивание/Вызов дополнительных функций
Unit Конвертер величин
Matrix Матрицы
Solve Уравнения и системы уравнений
изображение графика Построение графиков
* mod mod Деление с остатком
* ! ! Факториал
* i / j i / j Мнимая единица
* Re Re() Выделение целой действительной части
* Im Im() Исключение действительной части
* |x| abs() Модуль числа
* Arg arg() Аргумент функции
* nCr ncr() Биноминальный коэффициент
* gcd gcd() НОД
* lcm lcm() НОК
* sum sum() Суммарное значение всех решений
* fac factorize() Разложение на простые множители
* diff diff() Дифференцирование
* Deg Градусы
* Rad Радианы

Теперь, когда вам понадобится калькулятор, приходите на сайт и используйте бесплатный научный калькулятор.

ncor.ru