Как определить степень окисления атома химического элемента. Степень окисления к


Таблица степени окисления химических элементов

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

1

Водород / Hydrogen

H

(+1), (-1)

2

Гелий / Helium

He

0

3

Литий / Lithium

Li

(+1)

4

Бериллий / Beryllium

Be

(+2)

5

Бор / Boron

B

(-1), 0, (+1), (+2), (+3)

6

Углерод / Carbon

C

(-4), (-3), (-2), (-1), 0, (+2), (+4)

7

Азот / Nitrogen

N

(-3), (-2), (-1), 0, (+1), (+2), (+3), (+4), (+5)

8

Кислород / Oxygen

O

(-2), (-1), 0, (+1), (+2)

9

Фтор / Fluorine

F

(-1)

10

Неон / Neon

Ne

0

11

Натрий / Sodium

Na

(+1)

12

Магний / Magnesium

Mg

(+2)

13

Алюминий / Aluminum

Al

(+3)

14

Кремний / Silicon

Si

(-4), 0, (+2), (+4)

15

Фосфор / Phosphorus

P

(-3), 0, (+3), (+5)

16

Сера / Sulfur

S

(-2), 0, (+4), (+6)

17

Хлор / Chlorine

Cl

(-1), 0, (+1), (+3), (+5), (+7), редко (+2) и (+4)

18

Аргон / Argon

Ar

0

19

Калий / Potassium

K

(+1)

20

Кальций / Calcium

Ca

(+2)

21

Скандий / Scandium

Sc

(+3)

22

Титан / Titanium

Ti

(+2), (+3), (+4)

23

Ванадий / Vanadium

V

(+2), (+3), (+4), (+5)

24

Хром / Chromium

Cr

(+2), (+3), (+6)

25

Марганец / Manganese

Mn

(+2), (+3), (+4), (+6), (+7)

26

Железо / Iron

Fe

(+2), (+3), редко (+4) и (+6)

27

Кобальт / Cobalt

Co

(+2), (+3), редко (+4)

28

Никель / Nickel

Ni

(+2), редко (+1), (+3) и (+4)

29

Медь / Copper

Cu

+1, +2, редко (+3)

30

Цинк / Zinc

Zn

(+2)

31

Галлий / Gallium

Ga

(+3), редко (+2)

32

Германий / Germanium

Ge

(-4), (+2), (+4)

33

Мышьяк / Arsenic

As

(-3), (+3), (+5), редко (+2)

34

Селен / Selenium

Se

(-2), (+4), (+6), редко (+2)

35

Бром / Bromine

Br

(-1), (+1), (+5), редко (+3), (+4)

36

Криптон / Krypton

Kr

0

37

Рубидий / Rubidium

Rb

(+1)

38

Стронций / Strontium

Sr

(+2)

39

Иттрий / Yttrium

Y

(+3)

40

Цирконий / Zirconium

Zr

(+4), редко (+2) и (+3)

41

Ниобий / Niobium

Nb

(+3), (+5), редко (+2) и (+4)

42

Молибден / Molybdenum

Mo

(+3), (+6), редко (+2), (+3) и (+5)

43

Технеций / Technetium

Tc

(+6)

44

Рутений / Ruthenium

Ru

(+3), (+4), (+8), редко (+2), (+6) и (+7)

45

Родий / Rhodium

Rh

(+4), редко (+2), (+3) и (+6)

46

Палладий / Palladium

Pd

(+2), (+4), редко (+6)

47

Серебро / Silver

Ag

(+1), редко (+2) и (+3)

48

Кадмий / Cadmium

Cd

(+2), редко (+1)

49

Индий / Indium

In

(+3), редко (+1) и (+2)

50

Олово / Tin

Sn

(+2), (+4)

51

Сурьма / Antimony

Sb

(-3), (+3), (+5), редко (+4)

52

Теллур / Tellurium

Te

(-2), (+4), (+6), редко (+2)

53

Иод / Iodine

I

(-1), (+1), (+5), (+7), редко (+3), (+4)

54

Ксенон / Xenon

Xe

0

55

Цезий / Cesium

Cs

(+1)

56

Барий / Barium

BA

(+2)

57

Лантан / Lanthanum

La

(+3)

58

Церий / Cerium

Ce

(+3), (+4)

59

Празеодим / Praseodymium

Pr

(+3)

60

Неодим / Neodymium

Nd

(+3), (+4)

61

Прометий / Promethium

Pm

(+3)

62

Самарий / Samarium

Sm

(+3), редко (+2)

63

Европий / Europium

Eu

(+3), редко (+2)

64

Гадолиний / Gadolinium

Gd

(+3)

65

Тербий / Terbium

Tb

(+3), (+4)

66

Диспрозий / Dysprosium

Dy

(+3)

67

Гольмий / Holmium

Ho

(+3)

68

Эрбий / Erbium

Er

(+3)

69

Тулий / Thulium

Tm

(+3), редко (+2)

70

Иттербий / Ytterbium

Ib

(+3), редко (+2)

71

Лютеций / Lutetium

Lu

(+3)

72

Гафний / Hafnium

Hf

(+4)

73

Тантал / Tantalum

Ta

(+5), редко (+3), (+4)

74

Вольфрам / Tungsten

W

(+6), редко (+2), (+3), (+4) и (+5)

75

Рений / Rhenium

Re

(+2), (+4), (+6), (+7), редко (-1), (+1), (+3), (+5)

76

Осмий / Osmium

Os

(+3), (+4), (+6), (+8), редко (+2)

77

Иридий / Iridium

Ir

(+3), (+4), (+6), редко (+1) и (+2)

78

Платина / Platinum

Pt

(+2), (+4), (+6), редко (+1) и (+3)

79

Золото / Gold

Au

(+1), (+3), редко (+2)

80

Ртуть / Mercury

Hg

(+1), (+2)

81

Талий / Thallium

Tl

(+1), (+3), редко (+2)

82

Свинец / Lead

Pb

(+2), (+4)

83

Висмут / Bismuth

Bi

(+3), редко (+3), (+2), (+4) и (+5)

84

Полоний / Polonium

Po

(+2), (+4), редко (-2) и (+6)

85

Астат / Astatine

At

86

Радон / Radon

Ra

0

87

Франций / Francium

Fr

88

Радий / Radium

Ra

(+2)

89

Актиний / Actinium

Ac

(+3)

90

Торий / Thorium

Th

(+4)

91

Проактиний / Protactinium

Pa

(+5)

92

Уран / Uranium

U

(+3), (+4), (+6), редко (+2) и (+5)

ru.solverbook.com

Высшая степень окисления, формулы и примеры

Понятие степень окисления

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная – число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N2, h3, Cl2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na+1I-1, Mg+2Cl-12, Al+3F-13, Zr+4Br-14.

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Высшая степень окисления

Для элементов, проявляющих в своих соединениях различные степени окисления, существуют понятия высшей (максимальной положительной) и низшей (минимальной отрицательной) степеней окисления. Высшая степень окисления химического элемента обычно численно совпадает с номером группы в Периодической системе Д. И. Менделеева. Исключения составляют фтор (степень окисления равна -1, а элемент расположен в VIIA группе), кислород (степень окисления равна +2, а элемент расположен в VIA группе), гелий, неон, аргон (степень окисления равна 0, а элементы расположены в VIII группе), а также элементы подгруппы кобальта и никеля (степень окисления равна +2, а элементы расположены в VIII группе), для которых высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе (максимальная положительная степень окисления меди и серебра равна +2, золота +3).

Примеры решения задач

ru.solverbook.com

Степени окисления элементов — урок. Химия, 8–9 класс.

Степень окисления — условный заряд атома в соединении, если считать, что связь в нём ионная.

Степень окисления равна числу электронов, смещённых от атома или к атому.

Если электроны смещаются от атома, то его степень окисления положительная. Положительную степень окисления в соединениях имеет атом менее электроотрицательного элемента.

 

Если смещение электронов происходит к атому, то его степень окисления отрицательная.

 

Обрати внимание!

В простых веществах сдвига электронов нет, и степень окисления атомов равна \(0\).

 

Значение степени окисления указывают над знаком химического элемента:

 

Ca+2O−2,  N02.

 

Обрати внимание!

В сложных веществах степень окисления атомов металла всегда положительная.

Максимальное значение степени окисления металла можно определить по номеру группы, в которой элемент находится в Периодической таблице. Оно равно числу валентных электронов в атоме.

 

Металлы главных подгрупп в соединениях, как правило, проявляют постоянную степень окисления. У металлов \(IA\) группы она равна \(+1\):

 

Na+1Cl−1,  Li+12O−2.

 

У металлов \(IIA\) группы степень окисления всегда равна \(+2\):

 

Mg+2F−12,  Ba+2O−2.

 

Степень окисления алюминия — \(+3\):

 

Al+32S−23.

 

Металлы побочных подгрупп проявляют переменные степени окисления:

 

Fe+2O−2,  Fe+32O−23.

 

Обрати внимание!

Атомы неметаллов имеют как положительные, так и отрицательные степени окисления. 

У самого электроотрицательного из неметаллов фтора степень окисления постоянная и равна \(–1\):

 

H+1F−1,  K+1F−1.

 

Кислород почти всегда имеет степень окисления \(–2\):

 

Na+12O−2,  C+4O2−2.

 

Исключения — фторид кислорода и пероксиды:

 

O+2F−12,  H+12O−12.

 

В большинстве соединений степень окисления водорода \(+1\), но в соединениях с металлами она равна \(–1\):

 

H+1Br−1,  N−3H+13,  Na+1H−1,  Ca+2h3−1.

 

У атомов остальных неметаллов максимальное значение степени окисления тоже равно номеру группы:

 

C+4,  N+5,  S+6.

 

Минимальное значение степени окисления можно определить, если от номера группы отнять \(8\). Оно определяется числом электронов, которые необходимы атому до завершения внешнего электронного слоя:

 

C−4,  N−3,  S−2.

www.yaklass.ru

Как определить степень окисления атома химического элемента :: SYL.ru

Формальный заряд атома в соединениях — вспомогательная величина, обычно ее используют в описаниях свойств элементов в химии. Этот условный электрический заряд и есть степень окисления. Его значение изменяется в результате многих химических процессов. Хотя заряд является формальным, он ярко характеризует свойства и поведение атомов в окислительно-восстановительных реакциях (ОВР).

Окисление и восстановление

В прошлом химики использовали термин «окисление», чтобы описать взаимодействие кислорода с другими элементами. Название реакций произошло от латинского наименования кислорода - Oxygenium. Позже выяснилось, что другие элементы тоже окисляют. В этом случае они восстанавливаются — присоединяют электроны. Каждый атом при образовании молекулы изменяет строение своей валентной электронной оболочки. В этом случае появляется формальный заряд, величина которого зависит от количества условно отданных или принятых электронов. Для характеристики этой величины ранее применяли английский химический термин "oxidation number", который в переводе означает «окислительное число». При его использовании исходят из допущения, что связывающие электроны в молекулах или ионах принадлежат атому, обладающему более высоким значением электроотрицательности (ЭО). Способность удерживать свои электроны и притягивать их от других атомов хорошо выражена у сильных неметаллов (галогенов, кислорода). Противоположными свойствами обладают сильные металлы (натрий, калий, литий, кальций, другие щелочные и щелочноземельные элементы).

Определение степени окисления

Степенью окисления называют заряд, который атом приобрел бы в том случае, если бы принимающие участие в образовании связи электроны полностью сместились к более электроотрицательному элементу. Есть вещества, не имеющие молекулярного строения (галогениды щелочных металлов и другие соединения). В этих случаях степень окисления совпадает с зарядом иона. Условный или реальный заряд показывает, какой процесс произошел до того, как атомы приобрели свое нынешнее состояние. Положительное значение степени окисления — это общее количество электронов, которые были удалены из атомов. Отрицательное значение степени окисления равно числу приобретенных электронов. По изменению состояния окисления химического элемента судят о том, что происходит с его атомами в ходе реакции (и наоборот). По цвету вещества определяют, какие произошли перемены в состоянии окисления. Соединения хрома, железа и ряда других элементов, в которых они проявляют разную валентность, окрашены неодинаково.

Отрицательное, нулевое и положительное значения степени окисления

Простые вещества образованы химическими элементами с одинаковым значением ЭО. В этом случае связывающие электроны принадлежат всем структурным частицам в равной степени. Следовательно, в простых веществах элементам несвойственно состояние окисления (Н02, О02, С0). Когда атомы принимают электроны или общее облако смещается в их сторону, заряды принято писать со знаком "минус". Например, F–1,О–2, С–4. Отдавая электроны, атомы приобретают реальный или формальный положительный заряд. В оксиде OF2 атом кислорода отдает по одному электрону двум атомам фтора и находится в состоянии окисления О+2. Считают, что в молекуле или многоатомном ионе более электроотрицательные атомы получают все связывающие электроны.

Сера — элемент, проявляющий разные валентность и степени окисления

Химические элементы главных подгрупп зачастую проявляют низшую валентность равную VIII. Например, валентность серы в сероводороде и сульфидах металлов — II. Для элемента характерны промежуточные и высшая валентность в возбужденном состоянии, когда атом отдает один, два, четыре или все шесть электронов и проявляет соответственно валентности I, II, IV, VI. Такие же значения, только со знаком "минус" или "плюс", имеют степени окисления серы:

  • в сульфиде фтора отдает один электрон: –1;
  • в сероводороде низшее значение: –2;
  • в диоксиде промежуточное состояние: +4;
  • в триоксиде, серной кислоте и сульфатах: +6.

В своем высшем состоянии окисления сера только принимает электроны, в низшей степени — проявляет сильные восстановительные свойства. Атомы S+4 могут проявлять в соединениях функции восстановителей или окислителей в зависимости от условий.

Переход электронов в химических реакциях

При образовании кристалла поваренной соли натрий отдает электроны более электроотрицательному хлору. Степени окисления элементов совпадают с зарядами ионов: Na+1Cl–1. Для молекул, созданных путем обобществления и смещения электронных пар к более электроотрицательному атому, применимы только представления о формальном заряде. Но можно предположить, что все соединения состоят из ионов. Тогда атомы, притягивая электроны, приобретают условный отрицательный заряд, а отдавая, — положительный. В реакциях указывают, какое число электронов смещается. Например, в молекуле диоксида углерода С+4О-22 указанный в верхнем правом углу индекс при химическом символе углерода отображает количество электронов, удаленных из атома. Для кислорода в этом веществе характерно состояние окисления –2. Соответствующий индекс при химическом знаке О — количество добавленных электронов в атоме.

Как подсчитать степени окисления

Подсчет количества отданных и присоединенных атомами электронов может отнять много времени. Облегчают эту задачу следующие правила:

  1. В простых веществах степени окисления равны нулю.
  2. Сумма окисления всех атомов или ионов в нейтральном веществе равна нулю.
  3. В сложном ионе сумма степеней окисления всех элементов должна соответствовать заряду всей частицы.
  4. Более электроотрицательный атом приобретает отрицательное состояние окисления, которое записывают со знаком "минус".
  5. Менее электроотрицательные элементы получают положительные степени окисления, их записывают со знаком "плюс".
  6. Кислород в основном проявляет степень окисления, равную –2.
  7. Для водорода характерное значение: +1, в гидридах металлов встречается: Н–1.
  8. Фтор — наиболее электроотрицательный из всех элементов, его состояние окисления всегда равно –4.
  9. Для большинства металлов окислительные числа и валентности совпадают.

Степень окисления и валентность

Большинство соединений образуются в результате окислительно-восстановительных процессов. Переход или смещение электронов от одних элементов к другим приводит к изменению их состояния окисления и валентности. Зачастую эти величины совпадают. В качестве синонима к термину «степень окисления» можно использовать словосочетание «электрохимическая валентность». Но есть исключения, например, в ионе аммония азот четырехвалентен. Одновременно атом этого элемента находится в состоянии окисления –3. В органических веществах углерод всегда четырехвалентен, но состояния окисления атома С в метане СН4, муравьином спирте СН3ОН и кислоте НСООН имеют другие значения: –4, –2 и +2.

Окислительно-восстановительные реакции

К окислительно-восстановительным относятся многие важнейшие процессы в промышленности, технике, живой и неживой природе: горение, коррозия, брожение, внутриклеточное дыхание, фотосинтез и другие явления.

При составлении уравнений ОВР подбирают коэффициенты, используя метод электронного баланса, в котором оперируют следующими категориями:

  • степени окисления;
  • восстановитель отдает электроны и окисляется;
  • окислитель принимает электроны и восстанавливается;
  • число отданных электронов должно быть равно числу присоединенных.

Приобретение электронов атомом приводит к понижению его степени окисления (восстановлению). Утрата атомом одного или нескольких электронов сопровождается повышением окислительного числа элемента в результате реакций. Для ОВР, протекающих между ионами сильных электролитов в водных растворах, чаще используют не электронный баланс, а метод полуреакций.

www.syl.ru

Степень окисления в химии

Понятие «степень окисления»

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N2, h3, Cl2).

Степень окисления металлов

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na+1I-1, Mg+2Cl-12, Al+3F-13, Zr+4Br-14.

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).

Для кислорода, также имеющего высокое значение электроотрицательности, характерна отрицательная степень окисления обычно (-2), в пероксидах (-1). Исключение составляет соединение состава OF2, в котором степень окисления кислорода равна (+2).

Степень окисления щелочных и щелочноземельных элементов

Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно (+1) и (+2).

Постоянную степень окисления (+1) в большинстве соединений проявляет водород, например H+1Cl-1, H+12O-2, P-3H+13. Однако в гидридах степень окисления водорода – (-1), например Li+1H-1, Ca+2H-12.

Понятие степени окисления для большинства соединений имеет условных характер, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.

Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральных молекулах равна нулю, а в сложных ионах – заряду этих ионов. В качестве примера рассчитаем степень окисления азота в соединениях состава KNO2 и HNO3. Степень окисления водорода и щелочных металлов в соединениях равна (+), а степень окисления кислорода – (-2). Соответственно степень окисления азота равна:

KNO2 1+ x +2×(-2) = 0, x=+3.

HNO3 1+x+ x +3×(-2) = 0, x=+5.

Аналогичным образом можно определить степень окисления элементов в любых соединениях. Для примера приведем соединения азота с разными степенями окисления: N-3H+13, N-22H+12, N-1H+12O-2H+1, No2, N+12O-2, N+2O-2, Na+1N+3O-22, N+4O-22, K+N+5O-23.

Примеры решения задач

ru.solverbook.com

Степень окисления химических элементов

Степенью окисления называют условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный характер

1. Степень окисления атомов в простом веществе равна нулю. (Cu0, h30)2. Сумма степеней окисления всех атомов в молекуле вещества равна нулю.

3. Степень окисления водорода в соединениях с неметаллами равна +1.

4. Степень окисления водорода с металлами равна -1.

5. Степень окисления кислорода равна -2 (кроме OF2 и h3O2)

6. Окислители - атомы, ионы или молекулы, принимающие электроны, у окислителей степень окисленияпонижается.

7. Восстановители - атомы, ионы или молекулы, отдающие электроны, у восстановителей степень окисленияповышается.

Таблица элементов с постоянной степенью окисления

Элементы Степень окисления в сложных веществах
Li, Na, K, Rb, Cs +1
Be, Mg, Ca, Sr, Ba, Zn +2
B, Al +3
F -1

 

В соединениях из трех элементов степень окисления одного из элементов вычисляют, исходя из условия, что молекула электронейтральна.

Например, в молекуле фосфорной кислоты h4PO4 степень окисления водорода равна +1, кислорода -2, степень окисления фосфора обозначим за х.

Степень окисления фосфора рассчитываем по уравнению:

3 * (+1) + х + 4* (-2) = 0

х = + 5

Давайте порассуждаем вместе

1. Атом азота в азотной кислоте имеет степень окисления:

1) 0

2) +3

3) +5

4) -5

 

Ответ: Формула азотной кислоты HNO3, степень окисления водорода равна +1, кислорода -2, степень окисления азота обозначим за х и рассчитаем ее по уравнению: + 1 + х + 3* (-2) = 0

х = +5

2. Степень окисления -2 атом серы проявляет в каждом из соединений

1) CuSO4 и h3S

2) SO2 и Na2S

3) h3SO3 и SO3

4) CaS и FeS

 

Ответ: степень окисления -2 атом серы проявляет в бинарных соединениях с металлами (сульфидах) и водородом (h3S), поэтому правильный ответ CaS и FeS

3. Максимально возможную степень окисления атом хлора проявляет в соединении

1) HCl

2) HClO3

3) KClO4

4) Ba(ClO2)2

 

Ответ: атом хлора расположен в 7 группе, поэтому может иметь максимальную степень окисления +7. Такую степень окисления атом хлора проявляет в веществе KClO4. Проверим это. У калия степень окисления +1, у кислорода -2, у хлора х. Из уравнения: +1 +х + 4* (-2) = 0 находим х = +7

4. В соединениях NO2 и Nh4 степени окисления азота соответственно равны:

1) +4 и -3

2) +2 и +3

3) +2 и -2

4) +5 и +3

 

Ответ: В оксиде азота (IV) у кислорода степень окисления -2, значит у азота степень окисления +4. В аммиаке у водорода степень окисления +1, значит у азота степень окисления -3.

5. Установите соответствие между схемами превращения веществ и изменением степени окисления хлора

Схемы превращений Изменение степени окисления хлора
A) Cl2 + F2 = ClF3 1) -1 --> +5
Б) Cl2 + I2 = ICl3 2) +2 --> +4
В) ClO2 + h3 = HCl + h3O 3) 0 --> +3
4) 0 --> -1
5) +4 --> -1
6) +4 --> +1

Ответ:

В молекуле хлора Cl2 степень окисления хлора равна 0

В молекуле ClF3 у фтора степень окисления -1, значит у хлора +3

В молекуле ICl3 у хлора степень окисления -1

В молекуле ClO2 у кислорода степень окисления -2, значит у хлора +4

В молекуле HCl у водорода +1, а у хлора -1

 

6. Установите соответствие между схемами превращения веществ и изменением степени окисления серы

Схемы превращений Изменение степени окисления серы
A) h3S + O2 = h3O + SO2 1) -2 --> +4
Б) Cl2 + S = S2Cl2 2) +2 --> +4
В) h3SO3 + NO2 = NO + h3SO4 3) 0 --> +4
4) 0 --> +1
5) +4 --> +6
6) -2 --> 0

Ответ:

В молекуле сероводорода у водорода степень окисления +1, а у серы -2

В молекуле SO2 у кислорода степень окисления -2, а у серы +4

В молекуле сернистой кислоты у водорода степень окисления +1, у кислорода -2, значит у серы +4

В молекуле серной кислоты у водорода степень окисления +1, у кислорода -2, значит у серы + 6

 

7. Установите соответствие между схемами превращения веществ и изменением степени окисления азота

Схемы превращений Изменение степени окисления азота
A) Ph4 + NO = h4PO4 + N2 1) -2 --> +5
Б) P + NO2 = P2O5 + NO 2) +3 --> +5
В) h4PO3 + N2h5 = h4PO2 + N2 + h3O 3) 0 --> +5
4) +2 --> 0
5) +4 --> +2
6) -2 --> 0

Ответ:

В молекуле NO степень окисления у кислорода равна -2, а у азота +2

В молекуле азота N2 степень окисления азота равна 0

В молекуле NO2 степень окисления азота равна +4

В молекуле N2h5 степень окисления азота равна -2

 

8. В каких реакциях железо выступает в роли восстановителя?

1) Fe + S = FeS

2) 2FeCl3 + h3 = 2FeCl2 + 2HCl

3) 2Fe(OH)3 = Fe2O3 + 3h3O

4) 3Fe + 2O2 = Fe3O4

5) 2FeCl2 + Cl2 = 2FeCl3

 

Ответ: 1, 4, 5 , т.к. в этих реакциях железо отдает электроны и повышает свою степень окисления.

9. В каких реакциях сера не изменяет степень окисления?

1) Cu + S = CuS

2) 2HCl + Na2SO3 = 2NaCl + SO2 + h3O

3) Cu + 2h3SO4 = CuSO4 + SO2 + 2h3O

4) SO2 + h3O = h3SO3

5) SO2 + 2h3 = S + 2h3O

 

Ответ: 2, 4, т.к. в этих реакциях сера не изменяет свою степень окисления.

 

10. В каком соединении фосфор проявляет степень окисления -3

1) P2O3

2) Na3PO4

3)Ca3P2

4) PCl3

 

Ответ: степень окисления -3 фосфор проявляет в бинарных соединениях с металлами, значит в фосфиде кальция Ca3P2 у кальцая степень окисления +2, а у фосфора -3.

dx-dy.ru

Электроотрицательность. Степень окисления и валентность.

Электроотрицательность

Электроотрицательность  — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Степень окисления – условный заряд атома химического элемента  в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.
Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Элементы, проявляющие постоянную СО
Значение постоянной СО этого элемента
Щелочные металлы, т.е. все металлы

IA группы — Li, Na, K, Rb, Cs, Fr

+1
Все элементы II группы, кроме ртути:

Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd

+2
Алюминий Al +3
Фтор F -1

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент
Степень окисления практически во всех соединениях
Исключения
водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:

кислород O -2 Пероксиды водорода и металлов:

Фторид кислорода — 

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Химический элемент
Номер группы
Высшая степень окисления
Кислород VI +2 (в OF2)
Фтор VII 0
Медь I +2
Железо VIII  +6 (например K2FeO4)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна  -2 (кроме пероксидов и фторида кислорода OF2). Расставим известные степени окисления:

Обозначим степень окисления серы как x:

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы Nh5+ (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона Nh5+ , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами Nh5+ и анионами Cr2O72-.

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y:

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать здесь.

Валентность

Валентность — число химических связей, которые образует атом элемента в химическом соединении.

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов 

2) неподеленных электронных пар на орбиталях валентных уровней 

3) пустых электронных орбиталей валентного уровня 

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных (  ) орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к  тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Резюмируя информацию по валентным возможностям атома углерода:

1) Для углерода возможны валентности II, III, IV

2) Наиболее распространенная валентность углерода в соединениях IV

3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (Nh4), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но  также и тогда, когда один атом, имеющий неподеленную пару электронов — донор(  ) предоставляет ее другому атому с вакантной (  ) орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие  могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π-связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.

Резюмируя информацию по валентным возможностям атома азота:

1) Для азота возможны валентности I, II, III и IV

2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления +5 (!).

4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония Nh5+, азотная кислота и д.р).

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s-орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом азота не имеет на внешнем уровне d-подуровня, распаривание электронов s и p-орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Таким образом, кислород практически всегда имеет валентность, равную II, однако в некоторых частицах он трехвалентен, в частности, в молекуле угарного газа C≡O. В случае, когда кислород имеет валентность III, одна из ковалентных связей образована по донорно-акцепторному механизму.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода  h3S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, h3SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

scienceforyou.ru