Микропроцессоры. Структура микропроцессора и его основные характеристики. Разрядность микропроцессора это


Тема 3.2. Основные характеристики микропроцессоров

Количество просмотров публикации Тема 3.2. Основные характеристики микропроцессоров - 246

Характеристики универсальных микропроцессоров:

1. Разрядность(мощность) - определяется максимальной разрядностью целочисленных данных, обрабатываемых за 1 такт, то есть фактически разрядностью арифметико-логического устройства (АЛУ). Количество бит в машинном слове принято называть разрядностью. Чем больше разрядность, ᴛ.ᴇ. чем длиннее машинное слово, тем быстрее передаётся и обрабатывается информация, тем быстрее работает компьютер.

Применительно к микропроцессору, различают три вида разрядности:

1.Разрядность регистров микропроцессора;

2.Разрядность шины данных;

3.Разрядность шины адреса.

Разрядность регистров - это длина машинного слова внутри микропроцессора. Разрядность этого вида диктуется вместимостью внутренних ячеек памяти процессора- вместимостью регистров. Когда классифицируют микропроцессор и употребляют термин "разрядность микропроцессора", то подразумевается внутренняя разрядность, поскольку именно разрядность регистров определяет эффективность обработки данных микропроцессором, диктует диапазон допустимых значений операндов.

Разрядность шины данных. Под шиной данных принято понимать группа проводников, по которым от микропроцессора к другим устройствам компьютера передаются данные. Разрядность шины данных - ϶ᴛᴏ число проводников в ней. Этот вид разрядности диктует длину машинных слов при передаче информации вне процессора, ᴛ.ᴇ. это длина "внешнего машинного слова". Длина машинных слов внутри микропроцессора и длина внешнего машинного слова могут не совпадать. К примеру, первый микропроцессор, устанавливавшийся на персональный компьютер IBM PC (Intel 8088), имел внутреннюю разрядность 16 бит, а длину внешнего машинного слова- всœего 8 бит. В его современнике Intel 8086 длина внешнего машинного слова была увеличена до размеров разрядности регистров, ᴛ.ᴇ. до 16 бит, что дало прирост производительности микропроцессора на 40% при той же тактовой частоте. Схожее несовпадение разрядности компания Intel применила на микропроцессоре 80386SX, а также на всœех процессорах Pentium (исключая последние 64-разрядные).

Разрядность шины адреса- это число проводников в адресной шинœе. По этим проводникам от микропроцессора к оперативной памяти передаётся информация для определœения ячеек памяти, к которым нужно получить доступ. Чем шире шина адреса, тем к большему числу ячеек памяти может адресовываться микропроцессор. Размещено на реф.рфАдресное пространство микропроцессора, ᴛ.ᴇ. наибольший теоретически возможный размер оперативной памяти, доступный для данного микропроцессора, определяется величиной 2n, где n- разрядность адресной шины. К примеру, у Intel 8088 и Intel 8086 адресная шина имела 20 проводников. Наибольший размер оперативной памяти у компьютеров с таким микропроцессором был не более 220 = 1048 000 байт, ᴛ.ᴇ. 1 Мбайт. У процессора следующего поколения, Intel 80286, была 24-разрядная шина адреса, что увеличило максимум адресуемой оперативной памяти до 16 Мб. Начиная с Intel 80386, микропроцессоры Intel долгое время имели 32-битную шину адреса и соответственно адресное пространство 4 Гб.

2. Тип ядра и технология производства. Технология определяется толщиной минимальных элементов процессора, — чем более ʼʼтонкойʼʼ становится технология, тем больше транзисторов может уместиться на кристалле. Кроме этого, переход на новую технологию помогает снизить энергопотребление и тепловыделœение процессора, что очень важно для его стабильной работы.

Переход на новую технологию, как правило, влечет за собой и смену процессорного ʼʼядраʼʼ

3.Производительность - Производительность процессора измеряется во Флопсах. Флопс -это количество элементарных операций (тактов) выполняемых за 1 секунду с плавающей запятой. Флопс бывает:1Флопс=10 (нулевая степень), 1Килофлопс = 10***степени, 1 Мегафлопс = 10****** степени, 1 Гигафлопс = 10********* степени, 1 Террафлопс = 10************ степени.

Пусть у нас имеется процессор AMD Athlon Core2/3,5HHz,пусть процессор выполняет 4 операции за 1 такт времени в каждом ядре, вычислим его производительность:4х4х3,5ГГц=56( Гигафлопс) или 56 миллиардов операций в 1 секунду.

Надо помнить, что количество тактов выполняемых процессором не всœегда совпадает с фактическим количеством операций в 1 секунду! И вот почему:1)для выполнения многих математических операций процессору требуется несколько тактов,2)конкретное количество операций зависит от типа процессора(чем выше тип, тем меньше требуется количество тактов на выполнение операций),3)компоненты физической схемы компьютера влияют на скоростьвыполнения,4)быстродействие в основном определяется тактовой частотой процессора, чем она выше, тем больше скорость выполнения операций в 1 секунду!

4.Тактовая частота (быстродействие) — процессора или такт ядра процессора — промежуток между двумя импульсами тактового генератора, который синхронизирует выполнение всœех операций процессора. Самый важный показатель, определяющий скорость работы процессора. Тактовая частота͵ измеряемая в мегагерцах (МГц) и гигагерцах (ГГц), обозначает лишь то количество циклов, которые совершает работающий процессор за единицу времени (секунду).

Выполнение различных элементарных операций может занимать от долей такта до многих тактов исходя из команды и процессора. Общая тенденция состоит в уменьшении количества тактов, затрачиваемых на выполнение элементарных операций.

5. Объем кэш-памяти, которая имеет два уровня: L1 – память 1-го уровня, находящаяся внутри основной микросхемы микропроцессора и работающая всœегда на полной частоте микропроцессора; L2 – память 2-го уровня, кристалл, размещаемый на плате микропроцессора и связанный с ядром внутренней микропроцессорной шиной, может работать на полной или половинной частоте микропроцессора.

6. Архитектура МП. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы. Выделяют понятия микроархитектуры и макроархитектуры.

Микроархитектурамикропроцессора - ϶ᴛᴏ аппаратная организация и логическая структура микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.

Макроархитектура - ϶ᴛᴏ система команд, типы обрабатываемых данных, режимы адресации и принципы работы микропроцессора.

referatwork.ru

Микропроцессоры. Структура микропроцессора и его основные характеристики

Микропроцессор — это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических и логических операций над информацией.

Микропроцессор выполняет следующие основные функции:

1) чтение и дешифрацию команд из основной памяти;

2) чтение данных из основной памяти и регистров адаптеров внешних устройств;

3) прием и обработку запросов и команд от адаптеров на обслуживание внешних устройств;

4) обработку данных и их запись в основную память и регистры адаптеров внешних устройств;

5) выработку управляющих сигналов для всех прочих узлов и блоков компьютера.

В состав микропроцессора входят следующие устройства.

1. Арифметико-логическое устройство, предназначенное для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления, которое координирует взаимодействие различных частей компьютера и выполняет следующие основные функции:

• формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

• формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

• получает от генератора тактовых импульсов опорную последовательность импульсов.

3. Микропроцессорная память, предназначенная для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера. Включает в себя:

• внутренний интерфейс микропроцессора;

• буферные запоминающие регистры;

• схемы управления портами ввода-вывода и системной шиной. (Порт ввода-вывода — это аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство.)

К микропроцессору и системной шине наряду с типовыми внешними устройствами могут быть подключены и дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора. К ним относятся математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор используется для ускорения выполнения операций над двоичными числами с плавающей запятой, над двоично кодированными десятичными числами, для вычисления тригонометрических функций. Математический сопроцессор имеет свою систему команд и работает параллельно с основным микропроцессором, но под управлением последнего. В результате происходит ускорение выполнения операций в десятки раз. Модели микропроцессора, начиная с МП 80486 DX, включают математический сопроцессор в свою структуру.

Контроллер прямого доступа к памяти освобождает микропроцессор от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие компьютера.

Сопроцессор ввода-вывода за счет параллельной работы с микропроцессором значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств, освобождает микропроцессор от обработки процедур ввода-вывода, в том числе реализует режим прямого доступа к памяти.

Прерывание — это временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной. Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в микропроцессор.

Все микропроцессоры можно разделить на группы:

1) микропроцессоры типа CISC с полным набором системы команд;

2) микропроцессоры типа RISC с усеченным набором системы команд;

3) микропроцессоры типа VLIW со сверхбольшим ко­мандным словом;

4) микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

Важнейшими характеристиками микропроцессора являются:

1) тактовая частота. Характеризует быстродействие компьютера. Режим работы процессора задается микросхемой, называемой генератором тактовых импульсов. На выполнение процессором каждой операции отводится определенное количество тактов. Тактовая частота указывает, сколько элементарных операций выполняет микропроцессор за одну секунду. Тактовая частота измеряется в МГц;

2) разрядность процессора — это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция. Чем больше разрядность процессора, тем больше информации он может обрабатывать в единицу времени и тем больше, при прочих равных условиях, производительность компьютера;

3) адресное пространство. Каждый конкретный процессор может работать не более чем с определенным количеством оперативной памяти. Максимальное количество памяти, которое процессор может обслужить, называется адресным пространством процессора. Определяется адресное пространство разрядностью адресной шины.

studfiles.net

разрядность микропроцессора это — Разрядность микропроцессора. Что это такое? — 22 ответа



В разделе Прочее компьютерное на вопрос Разрядность микропроцессора. Что это такое? заданный автором Простецкий лучший ответ это Информация внутри компьютера представлена в виде двоичных чисел, т.е. сочетаний логических единиц и нулей, называемых битами (1 бит- один двоичный разряд, 1 или 0). Между устройствами компьютера данные передаются не сплошным потоком, а порциями- машинными словами, одно машинное слово передаётся за один такт работы компьютера. Количество бит в машинном слове называется разрядностью. Чем больше разрядность, т.е. чем длиннее машинное слово, тем быстрее передаётся и обрабатывается информация, тем быстрее работает компьютер.Применительно к микропроцессору, различают три вида разрядности:1. разрядность регистров микропроцессора;2. разрядность шины данных;3. разрядность шины адреса.Разрядность регистров- это длина машинного слова внутри микропроцессора. Разрядность этого вида диктуется вместимостью внутренних ячеек памяти процессора- вместимостью регистров. Когда классифицируют микропроцессор и употребляют термин "разрядность микропроцессора", то подразумевается внутренняя разрядность, поскольку именно разрядность регистров определяет эффективность обработки данных микропроцессором, диктует диапазон допустимых значений операндов.С середины 80-х, когда был выпущен процессор Intel 80386 и до начала 2000-х годов все процессоры для персональных компьютеров (не серверов и профессиональных рабочих станций) были 32-разрядными. В 2002 году появились 64-битные процессоры "Power PC G5" разработки компании IBM для персональных компьютеров Apple Mac. Первые 64-битные процессоры для IBM PC-совместимых персональных компьютеров были разработаны в 2003 году компанией AMD (Athlon 64). Весной 2005 года компания Intel предложила свои первые 64-разрядные микропроцессоры для персональных компьютеров- это Intel Pentium 4 серии 6хх и Pentium 4XE с частотой 3.73 МГц, поддерживающие технологию EM64T. Следует отметить, что для эффективной работы микропроцессоров AMD и Intel в новом 64-разрядном режиме необходимо установить на компьютер 64-разрядные версии всех программ, и в первую очередь операционную систему WindowsХР Pro x64. Иначе перечисленные процессоры будут работать как их 32-разрядные предшественники, принципиально от них не отличаясь.Разрядность шины данных. Под шиной данных понимается группа проводников, по которым от микропроцессора к другим устройствам компьютера передаются данные. Разрядность шины данных – это число проводников в ней. Этот вид разрядности диктует длину машинных слов при передаче информации вне процессора, т.е. это длина "внешнего машинного слова". Длина машинных слов внутри микропроцессора и длина внешнего машинного слова могут не совпадать. Например, первый микропроцессор, устанавливавшийся на персональный компьютер IBM PC (Intel 8088), имел внутреннюю разрядность 16 бит, а длину внешнего машинного слова- всего 8 бит. В его современнике Intel 8086 длина внешнего машинного слова была увеличена до размеров разрядности регистров, т.е. до 16 бит, что дало прирост производительности микропроцессора на 40% при той же тактовой частоте. Схожее несовпадение разрядности компания Intel применила на микропроцессоре 80386SX, а также на всех процессорах Pentium (исключая последние 64-разрядные).Разрядность шины адреса- это число проводников в адресной шине. По этим проводникам от микропроцессора к оперативной памяти передаётся информация для определения ячеек памяти, к которым надо получить доступ. Чем шире шина адреса, тем к большему числу ячеек памяти может адресовываться микропроцессор. Адресное пространство микропроцессора, т.е. наибольший теоретически возможный размер оперативной памяти, доступный для данного микропроцессора, определяется величиной 2n, где n- разрядность адресной шины. Например, у Intel 8088 и Intel 8086 адресная шина имела 20 проводников. Наибольший размер оперативной памяти у компьютеров с таким микропроцессором был не более 220 = 1048 000 байт, т.е. 1 Мбайт. У процессора следующего поколения, Intel 80286, была 24-разрядная шина адреса, что увеличило максимум адресуемой оперативной памяти до 16 Мб. Начи

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Разрядность микропроцессора. Что это такое?

Ответ от Правосознание[гуру]Ширина системной шины процессора. Число со столькими разрядами он может обрабатывать сразу за один тактовый шаг.

Ответ от KM1948[гуру]Для bimbam - первые 64-ч разрядные системы для мини и персональных ЭВМ появились еще в 1992 году - авторы: фирма Digital Equipment Corporation. Intel тогда был в рядах догоняющих....

Ответ от 2 ответа[гуру]

Привет! Вот еще темы с нужными ответами:

 

Ответить на вопрос:

22oa.ru

Разрядность процессора – что это?(32/64)

Один из параметров, который имеет важное значение для производительности процессора – это его разрядность. Разрядность процессора говорит о том, какое количество бит информации он примет и обработает через свои регистры за один такт.

В 2002 году произошёл скачок в эволюционном развитии разрядности процессоров. Компания «AMD» выпустила на рынок процессоры с расширенной 64-битной «IA32 — AMD64» архитектурой вместо стандартной 32-битной.

Компания «Intel не заставила себя долго ждать», и на рынок была выпущена их новая разработка 64-битного процессора с обозначением – «EM64T».

Конечно, цифры поменялись, но суть сохранилась, то есть основные внутренние регистры процессора просто увеличили свою разрядность в 2 раза – было 32 бита, стало 64.

На сегодняшний день все выпускаемые процессоры имеют 64-битную разрядность, но на них также можно запускать 32-разрядные программные продукты. Такая возможность сохранилась по той причине, что 64-разр. сделана как расширение и поэтому допускает запуск 32-разр. приложений.

32 и 64-разрядные процессоры имеют разную маркировку. У 32-р. маркировка «х86», где «86» означает поколение процессора. 64-разр. маркируются символами «х64, EM64T, AMD64».

Чтобы вы имели возможность использовать 64-разр. процессор во всю силу вам необходимо установить на компьютер 64-битную ОС, которая обозначается теми же символами «х64».

Что в итоге дает разрядность для обычного пользователя ПК 32 или 64. Если не лезть в дебри, то на компьютере, построенном на 32-р. x86 процессоре и на этом компьютере установлена 32-битная операционная система то объем доступной оперативной памяти будет ограничен 4 Гб. Ну а в 64-битной операционной системе установленной на 64-р. процессор – объем поддерживаемой оперативной памяти специально логически ограничен до 16 Тб.

В целом для обычного рядового пользователя, использование 64-битной операционной системы на ПК дает возможность использовать более 4 Гб оперативной памяти.

Вы можете узнать всю информацию о своём процессоре с помощью программных утилит. К ним относится, например «CPU-Z», которая анализирует архитектуру компьютера и выдаёт все данные о его основных компонентах.

www.white-windows.ru

Микропроцессоры. Структура микропроцессора и его основные характеристики

Поиск Лекций

Микропроцессор - это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических и логических операций над информацией.

Микропроцессор выполняет следующие основные функции:

1) чтение и дешифрацию команд из основной памяти;

2) чтение данных из основной памяти и регистров адаптеров внешних устройств;

3) прием и обработку запросов и команд от адаптеров на обслуживание внешних устройств;

4) обработку данных, а также их запись в основную память и регистры адаптеров внешних устройств;

5) выработку управляющих сигналов для всех прочих узлов и блоков компьютера.

В состав микропроцессора входят следующие устройства:

1. Арифметико-логическое устройство предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

- формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

- формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера; - получает от генератора тактовых импульсов опорную последовательность импульсов.

3. Микропроцессорная память предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память- строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера. Включает в себя:

- внутренний интерфейс микропроцессора;

- буферные запоминающие регистры;

- схемы управления портами ввода-вывода и системной шиной. (Порт ввода-вывода - это аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство.)

К микропроцессору и системной шине наряду с типовыми внешними устройствами могут быть подключены и дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора. К ним относятся математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор используется для ускорения выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления тригонометрических функций. Математический сопроцессор имеет свою систему команд и работает параллельно с основным микропроцессором, но под управлением последнего. В результате происходит ускорение выполнения операций в десятки раз. Модели микропроцессора, начиная с МП 80486 DX, включают математический сопроцессор в свою структуру.

Контроллер прямого доступа к памяти освобождает микропроцессор от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие компьютера.

Сопроцессор ввода-вывода за счет параллельной работы с микропроцессором значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств, освобождает микропроцессор от обработки процедур ввода-вывода, в том числе реализует режим прямого доступа к памяти.

Прерывание - это временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной. Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в микропроцессор.

Все микропроцессоры можно разделить на группы:

1) микропроцессоры типа CISC с полным набором системы команд;

2) микропроцессоры типа RISC с усеченным набором системы команд;

3) микропроцессоры типа VLIW со сверхбольшим командным словом;

4) микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

Важнейшими характеристиками микропроцессора являются:

1) тактовая частота - характеризует быстродействие компьютера. Режим работы процессора задается микросхемой, называемой генератором тактовых импульсов. На выполнение процессором каждой операции отводится определенное количество тактов. Тактовая частота указывает, сколько элементарных операций выполняет микропроцессор за одну секунду. Тактовая частота измеряется в МГц;

2) разрядность процессора - это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция. Чем больше разрядность процессора, тем больше информации он может обрабатывать в единицу времени и тем больше, при прочих равных условиях, производительность компьютера;

3) адресное пространство - каждый конкретный процессор может работать не более чем с определенным количеством оперативной памяти. Максимальное количество памяти, которое процессор может обслужить, называется адресным пространством процессора. Определяется адресное пространство разрядностью адресной шины.

poisk-ru.ru

Классификация, структура и основные характеристики микропроцессоров ПК 2

Оглавление

1. Введение. …....………………………………………2

2. Теоретический вопрос: «Классификация, структура и основные характеристики микропроцессоров ПК» ………….3

3. Практикум. Задача. ………………………………….13

4. Список использованной литературы. ………………22

Введение

В настоящем времени трудно назвать те области человеческой

деятельности, успехи в которых не были бы связаны с использованием

компьютера. Сфера применения компьютера постоянно расширяется, существенно влияя на развитие производительных сил нашего общества. Непрерывно изменяются технико-экономические характеристики компьютера, например, такие, как быстрота действия, ёмкость памяти, надёжность в работе, стоимость, удобства в эксплуатации, габаритные размеры, потребляемая мощность и др. В широком понимании всякий компьютер рассматривается как преобразователь информации. При этом под информацией понимается различные сведения о тех или иных явлениях природы, событиях общественной жизни или процессах, протекающих в технических устройствах. Все персональные компьютеры и растущее число наиболее современного оборудования работают на специальной электронной схеме, названной микропроцессором. Часто его называют компьютер в чипе. Современный микропроцессор - это кусочек кремния, который был выращен в стерильных условиях по специальной технологии.

В данной работе мною изложены основные теоретические сведения о

логическом устройстве микропроцессора, его предназначении и принципах работы.

2.

За время существования электронная промышленность пережила немало потрясений и революций. Коренной перелом - создание электронных микросхем на кремниевых кристаллах, которые заменили транзисторы и которые назвали интегральными схемами. Со времени своего появления интегральные схемы делились на: малые, средние, большие и ультра большие (МИС, СИС, БИС и УБИС соответственно). Все больше и больше транзисторов удавалось поместить на всё меньших и меньших по размерам кристаллах. Следовательно, ультра большая интегральная схема оказывалась не такой уж большой по размеру и огромной по своим возможностям. Поэтому процессоры созданы именно на основе УБИС. Развитие микропроцессоров в электронной индустрии проходило настолько быстрыми темпами, что каждая модель микропроцессора становилась маломощной с момента появления новой модели, а ещё через 2-3 года считалась устаревшей и снималась с производства.[1]

Микропроцессор - это программно управляемое устройство, предназначенное для обработки цифровой информации и управления процессами этой обработки, выполненной в виде одной или нескольких интегральных схем с высокой степенью интеграции электронных компонентов.[2]

Внутренняя структура микропроцессора.

Любая ЭВМ предназначена для обработки информации, причем, как правило, осуществляет эту обработку опосредовано – представляя информацию в виде чисел. Именно микропроцессор предназначен для работы с числами и является важнейшей частью компьютера. Микропроцессор - это универсальное логическое устройство, которое оперирует с двоичными числами, осуществляя простейшие логические и математические операции, и не просто как придется, а в соответствии с программой, т.е. в заданной последовательности. Для хранения этой заданной последовательности служат запоминающие устройства – ЗУ . ЗУ бывают постоянными – ПЗУ, в которых информация хранится, не изменяясь сколь угодно долго, и оперативными – ОЗУ, информация в которых может быть изменена в любой момент в соответствии с результатами ее обработки. Процессор общается с ОЗУ и ПЗУ через так называемое адресное пространство, в котором каждая ячейка памяти имеет свой адрес.

В общем случае в состав микропроцессора, кроме ЗУ входят: арифметико-логическое устройство (АЛУ), блок управления и синхронизации, регистры и другие блоки, необходимые для выполнения операций вычислительного процесса.

А Л У - арифметико-логическое устройство. Оно обеспечивает выполнение основных операций по обработке информации.[3]

Любую задачу компьютер разбивает на отдельные логические операции, производимые над двоичными числами, причем в одну секунду осуществляются сотни тысяч или миллионы таких операций. Сложение, вычитание, умножение и деление – элементарные операции, выполняемые АЛУ ЭВМ. Полный набор таких операций называют системой команд, а схемы их реализации составляют основу АЛУ. Помимо арифметического устройства АЛУ включает и логическое устройство, предназначенное для операций, при осуществлении которых отсутствует перенос из разряда в разряд. Иногда эти операции называют логическое И , и логическое ИЛИ. Все операции в АЛУ производятся в регистрах – специально отведенных ячейках АЛУ. Время выполнения простейших операций определяется минимальным временем сложения двух операндов, находящихся в регистрах. В случае, если одно или оба слагаемых находятся не в регистрах, а в запоминающем устройстве (ЗУ), учитывается также время пересылки слагаемых в регистры и время записи полученной суммы в ЗУ. В большинстве современных микропроцессоров это время составляет от нескольких сотен наносекунд до нескольких микросекунд.

РЕГИСТРЫ - внутренние носители информации микропроцессора. Это внутренняя память процессора. [4]

МП состоит из набора регистров памяти различного назначения, которые определенным образом связаны между собой и обрабатываются в соответствии с некоторой системой правил. Регистр – это устройство, предназначенное для хранения и обработки двоичного кода. К внутренним регистрам процессора относят: счетчик адреса команд, указатель стека, регистр состояний, регистры общего назначения.

Роль счетчика состоит в сохранении адреса очередной команды программы и автоматическом вычислении адреса следующей. Благодаря наличию программного счетчика в ЭВМ реализуется основной цикл исполнения последовательно расположенных команд программы.

Стек – это особый способ организации памяти, при использовании которого достаточно сохранять адрес последней заполненной ячейки ОЗУ. Именно адрес последней заполненной ячейки ОЗУ и хранится в указателе стека. Стек используется процессором для организации механизма прерываний, обработки обращения к подпрограммам, передачи параметров и временного хранения данных.

В регистре состояний хранятся сведения о текущих режимах работы

процессора. Сюда же помещается информация о результатах выполняемых команд, например: равен ли результат нулю, отрицателен ли он, не возникли ли в ходе операции ошибки и т.п. Использование и анализ в этом регистре происходит побитно, каждый бит регистра имеет самостоятельное значение.

Регистры общего назначения (РОН) служат для хранения текущих обрабатываемых данных или их адреса в ОЗУ. У некоторых процессоров регистры функционально равнозначны, в других назначение регистров строго оговаривается. Информация из одного регистра может предаваться в другой.

УУ - устройство управления, управляет процессом обработки и обеспечивает связь с внешними устройствами.[5] Выполняет следующие основные функции:

o формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

o формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

o получает от генератора тактовых импульсов обратную последовательность импульсов.

Основные характеристики микропроцессора.

1. Тип микpопpоцессоpа.

Тип установленного в компьютеpе микpопpоцессоpа является главным фактоpом, опpеделяющим облик ПК. Именно от него зависят вычислительные возможности компьютеpа. В зависимости от типа используемого микpопpоцессоpа и опpеделенных им аpхитектуpных особенностей компьютеpа pазличают пять классов ПК[6] :

1. Компьютеpы класса XT;

2. Компьютеpы класса AT;

3. Компьютеpы класса 386;

4. Компьютеpы класса 486;

5. Компьютеpы класса Pentium.

2. Тактовая частота микpопpоцессоpа.

Импульсы тактовой частоты поступают от задающего генеpатоpа, pасположенного на системной плате.

Тактовая частота микpопpоцессоpа - количество импульсов, создаваемых генеpатоpом за 1 секунду.

Тактовая частота необходима для синхpонизации pаботы устpойств ПК.

Влияет на скоpость pаботы микpопpоцессоpа. Чем выше тактовая частота, тем выше его быстpодействие.

3. Быстpодействие микpопpоцессоpа.

Быстpодействие микpопpоцессоpа - это число элементаpных опеpаций,

выполняемых микpопpоцессоpом в единицу вpемени (опеpации/секунда).

4. Разpядность пpоцессоpа.

Разpядность пpоцессоpа - максимальное количество pазpядов двоичного

кода, котоpые могут обpабатываться или пеpедаваться одновpеменно.

5. Функциональное назначение микpопpоцессоpа.

1. Унивеpсальные, т.е. основные микpопpоцессоpы.[7]

Они аппаpатно могут выполнять только аpифметические опеpации и только над целыми числами, а числа с плавающей точкой обpабатываются на них пpогpаммно.

2. Сопpоцессоpы.[8]

Микpопpоцессоpный элемент, дополняющий функциональные возможности основного пpоцессоpа. Сопpоцессоp pасшиpяет набоp команд компьютеpа. Когда основной пpоцессоp получает команду, котоpая не входит в его pабочий набоp, он может пеpедать упpавление сопpоцессоpу, в pабочий набоp котоpого входит эта команда.

Например, существуют сопроцессоры математические, графические и т.д.

6. Аpхитектуpа микpопpоцессоpа.

В соответствии с аpхитектуpными особенностями, опpеделяющими свойства системы команд, pазличают:

1. Микpопpоцессоpы с CISC аpхитектуpой.[9]

mirznanii.com

Основные характеристики микропроцессора | Открытый класс

ОСНОВНЫЕ ХАРЕКТЕРИСТИКИ МИКРОПРОЦЕССОРА

  Микропроцессор характеризуется:

1) тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ; 

  Та́ктовая частота́ — частота синхронизирующих импульсов синхронной электронной схемы, то есть количество синхронизирующих тактов, поступающих извне на вход схемы за секунду. В самом первом приближении тактовая частота характеризует производительность подсистемы (процессора, памяти и пр.), то есть количество выполняемых операций в секунду.

 

2) разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов; 

  Разрядностью электронного устройства или шины называется количество разрядов (битов), одновременно обрабатываемых этим устройством или передаваемых этой шиной.

 

Разрядностть МП (микропроцессора) обозначается m / n / k / и включает:

m - разрядность внутренних регистров, определяет принадлежность к тому или иному классу процессоров;

n - разрядность шины данных, определяет скорость передачи информации;

k - разрядность шины адреса, определяет размер адресного пространства. Например, МП i8088 характеризуется значениями m/n/k=16/8/20;

3) архитектурой. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы. Выделяют понятия микроархитектуры и макроархитектуры.  

  Микроархитектура микропроцессора - это аппаратная организация и логическая структура микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.

 

  Макроархитектура - это система команд, типы обрабатываемых данных, режимы адресации и принципы работы микропроцессора.

  В общем случае под архитектурой ЭВМ понимается абстрактное представление машины в терминах основных функциональных модулей, языка ЭВМ, структуры данных.

 

 

Вопросы:

1) Назовите основные характеристики микропроцессора.

2) Дайте определение тактовой частоты.

3) Дайте определение разрядности.

4) Дайте определение микроархитектуры.

5)  Как обозначается разрядность МП (микропроцессора)?

6) Что определяет разрядность внутренних регистров?

7) Что определяет разрядность шины данных?

8) Что определяет разрядность шины адреса?

9) Как по-другому называют количество разрядов электронного устройства или шины?

 

www.openclass.ru