Перевод десятичных чисел в шестнадцатиричную систему счисления. Перевод с десятичную системы в шестнадцатиричной


Перевод из шестнадцатеричной системы исчисления в десятичную

В повседневной жизни мы используем счёт, основанный на десятичной системе счисления. Что это значит? Это значит, что все числа, которыми мы пользуемся, отображаются с помощью всего лишь 10 символов или цифр. Они знакомы нам с детства: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Например, запись числа «девятьсот шестьдесят восемь» состоит из символов, входящих в указанный набор: 968. Так можно отобразить любое число.

Но есть и другие системы счисления. Например, двоичная. Здесь для записи любого числа используется набор всего из двух символов-цифр: 0 и 1. Чтобы записать в этой системе десятичное число 13, понадобятся четыре цифры: 1101. Указанный фокус можно проделать с любым десятичным числом, записав его в виде последовательности символов, входящих в определённый набор. Этот набор является своего рода алфавитом, из букв которого строятся слова-числа.

Свод правил, по которым можно производить те или иные действия с числами, записанными с использованием символов из такого алфавита (сложение, вычитание, умножение, деление и т. д. ), и называют системой счисления (с. с.). А количество всех символов, входящих в набор-алфавит, называют основанием с. с. При записи числа в такой системе место, на котором находится каждая цифра в нём, будет её разрядом. Разряды же нумеруются справа налево от 0 и до бесконечности.

Какие бывают системы счисления

На самом деле, существует бесчисленное множество с. с. Например, количество позиционных с. с., к которым относятся системы с натуральным основанием, бесконечно. Потому что, каким бы огромным числом ни было основание, всегда можно выразить любое число в данной системе счисления. Главное, чтобы хватило символов для его записи. Например, для записи чисел в системе счисления с основанием 666 понадобится алфавит, включающий в себя ровно 666 символов-букв или, если хотите, цифр.

Таким образом, теоретически можно использовать позиционные с. с. с любым натуральным основанием. Но на практике мы используем лишь небольшое их количество. К ним относятся: двоичная, троичная, восьмеричная, десятичная, двенадцатеричная, шестнадцатеричная и шестидесятеричная с. с.

Двоичная используется в программировании, информатике и дискретной математике, десятичная — во всех сферах жизни, где есть необходимость считать и измерять, шестнадцатеричная — также используется в информатике и программировании (особенно, в низкоуровневом, где используются языки ассемблеры), а также в компьютерной документации, шестидесятеричная — в счёте и измерении времени и углов (в частности, географических координат).

Кроме упомянутых, есть и другие системы, не относящиеся к позиционным. Это смешанные и непозиционные с. с., которые мы здесь рассматривать не будем.

Как сделать перевод из десятичной системы счисления в шестнадцатеричную

Итак, как уже было упомянуто, любое число в позиционной системе с основанием N можно представить последовательностью символов из набора, состоящего из N цифр и букв. В шестнадцатеричной системе таким набором будут цифры от 0 до 9 и латинские буквы A, B, C, D, E, F, ​итого — 16 символов.

Чтобы сделать перевод из десятичной в шестнадцатеричную систему, вовсе не понадобится калькулятор, если вы хотите научиться делать это сами, вручную. Итак, запаситесь терпением и… вперёд!

Возьмём любое число X, записанное в десятичной с. с., целая часть которого [X] равна P, а дробная часть {X} равна Q. Если X<0, то знак «минус» вначале нужно отбросить, а в конце снова приписать, во избежание путаницы. Далее, следуя алгоритмам 1 и 2, вы получите из Х шестнадцатеричный вид.

Алгоритм 1

Перевод целого десятичного числа в шестнадцатеричное

  1. Разделите P на 16. У вас получатся: частное P0, как результат деления, и остаток от деления R0.
  2. Если P0≠0, то разделите P0 на 16. У вас получится частное P1 и остаток R1. Если P0=0, то переходите к пункту 4.
  3. Продолжайте производить деление, как в пунктах 1 и 2. У вас будут получаться пары чисел (Pi, Ri), где i=0, 1, 2,…, k.
  4. Если частное от деления станет равным нулю, то процесс деления прекращается. Все полученные остатки Ri запишите в последовательности, начиная с последнего. У вас получится ряд Rk,…, R2, R1, R0. Если среди остатков Ri есть числа, большие 9, то для их обозначения используйте буквы латинского алфавита: 10 — А, 11 — В, 12 — С, 13 — D, 14 — E, 15 — F. Полученная последовательность Rk…R2 R1 R0 будет шестнадцатеричной формой записи десятичного числа Р, что записывается так: Р (10)=Rk…R2 R1 R0 (16).

Алгоритм 2

Перевод дробного десятичного числа в шестнадцатеричное

  1. Умножьте Q<1 на 16. В полученном результате выделите целую S1 и дробную Q1 части.
  2. Если Q1≠0, то умножьте Q1 на 16. В полученном результате снова выделите целую S2 и дробную Q2 части. Если Q1=0, то перейдите к пункту 4.
  3. Продолжайте производить умножение, как в пунктах 1 и 2. У вас получатся пары чисел (Qj, Sj), где j=1, 2, 3,…, n.
  4. Если дробная часть результата умножения станет равной нулю, то процесс умножения прекращается. Все полученные числа Sj запишите в последовательности, начиная с первого. У вас получится ряд S1, S2, S3,…, Sn. Если среди Sj есть числа, большие 9, то для их обозначения используйте латинские буквы: 10 — А, 11 — В, 12 — С, 13 — D, 14 — E, 15 — F. Полученная последовательность S1 S2 S3… Sn будет 16-ичной формой записи 10-ичного числа Q, что записывается так: Q (10)=S1 S2 S3… Sn (16).

Как перевести число из шестнадцатеричной системы счисления в десятичную

Согласно одной алгебраической теореме, любое число Y, записанное в N-ичной с. с., можно представить в виде:

Y (N)=Rk•N^k+…Ri•N^i+…+R3•N 3 +R2•N 2 +R1•N 1 +R0•N 0 +S1•N^(-1)+S2•N^(-2)+S3•N^(-3)+…+Sj•N^(-j)+…+Sn•N^(-n) =Rk…Ri…R2 R1 R0, S1 S2 S3… Sj… Sn=X (10).

В этом выражении коэффициенты N^i (i=0…k) и N^(-j) (j=1…n) называются весовыми коэффициентами разрядов, Riи Sj — цифрами N-ичного числа, i — номером разряда в целой части R, (-j) — номером разряда в дробной части S N-ичного числа Y (R=[Y], S={Y}).

Справа в этом выражении стоит результат сложения всех весовых коэффициентов, умноженных на цифры соответствующих разрядов N-ричного числа Y, который представлен в виде 10-ичного числа Х.

Пользуясь этой теоремой, мы легко сможем переводить шестнадцатеричные числа в десятичные. Для этого нужно просто в приведённую выше формулу подставить N=16. В результате получим следующий алгоритм.

Алгоритм 3

Способ перевода из 16-ричной системы в 10-ичную

  1. Пусть задано 16-ричное число Y (16), имеющее в целой части k+1 цифр, а в дробной — n цифр. Номера разрядов в целой части принимают значения от 0 до k. Умножьте каждую его цифру, начиная с первой перед запятой, на 16 в степени, равной номеру разряда этой цифры. Полученные произведения сложите. Результатом будет целая часть Y в десятичном виде — P=[X].
  2. Умножьте теперь каждую цифру числа Y (16), начиная с первой цифры, стоящей после запятой, на 16 в степени, равной отрицательному номеру разряда этой цифры. Номера разрядов в дробной части идут от -1 до -n. Полученные произведения сложите. Результатом будет дробная часть Y в десятичном виде — Q={X}.
  3. Сложите целую и дробную части Y в десятичном виде. Вы получите результат — десятичное число X (10)=Y (16).

Примеры

1. Перевести 1237 (10) в систему с основанием 16.

Решение. Последовательно деля 1237 на 16, мы получим следующие остатки: 5, 13 и 4 (см. алгоритм 1). Чтобы записать 1237 (10) в 16-ричной форме, запишем указанные остатки в обратном порядке, заменив 13 на букву D. Получим: 1237 (10)=4D5 (16). Чтобы убедиться в правильности перевода, произведём проверку (см. алгоритм 3): 4D5 (16)=4•16²+13•16¹+5=1024+208+5=1237 (10).

2. Перевести 0,07080078125 (10) в 16-ричный вид.

Решение. Последовательно умножая 0,07080078125 на 16, отбрасывая целые части получаемых произведений, получим следующий ряд: 1, 2, 2 (см. алгоритм 2). Чтобы записать 0,07080078125 (10) в шестнвдцатиричной форме, запишем указанные цифры в прямом порядке. Получим: 0,07080078125 (10)=0,122 (16). Чтобы убедиться в правильности перевода, сделаем проверку (см. алгоритм 3): 0,122 (16)=1•(1/16¹)+2•(1/16²)+2•(1/16³)=0,0625+0,0078125+0,00048828125= 0,07080078125 (10).

Видео

Из видео вы узнаете, как правильно перевести из шестнадцатеричной системы в двоичную.

liveposts.ru

Перевод десятичных чисел в шестнадцатиричную систему счисления — МегаЛекции

Лабораторная работа №1

Тема: Система счисления. Перевод целых десятичных чисел в двоичную, восьмеричную, шестнадцатиричную систему счисления. (1 час), СРСП(1 час).

Десятичная система счисления

Название «десятичная» объясняется тем, что в основе этой системы лежит основание десять. В этой системе для записи чисел используются десять цифр - 0, 1, 2, 3, 4 , 5, 6, 7, 8, 9.

Десятичная система является позиционной, так как значение цифры в записи десятичного числа зависит от ее позиции, или местоположения, в числе.

Позицию, отводимую для цифры числа, называют разрядом.

Например, запись 526 означает, что число состоит из 5 сотен, 2 десятков и 6 единиц, Цифра 6 стоит в разряде единиц. Цифра 2 - в разряде десятков цифра 5-в разряде сотен.

Это число записать в виде суммы:

526=5*102+2*101+6*100

в этой записи число 10-основание системы счисления. Для каждой цифры числа основание 10 возводится в степень, зависящую от позиции цифры, и умножается на эту цифру. Степень основания для единиц равна нулю, для десятков - единице, для сотен – двум и т.д.

Для записи десятичных дробей используются отрицатель­ные значения степеней основания. Например, число 555,55 в развернутой форме записывается следующим образом:

555,5510 = 5*102 + 5*101+ 5*10°+ 5*10-1+5*10-2.:

Перевод целых десятичных чисел в двоичную систему счисления.

При переводе десятичного числа в двоичное нужно это число делить на 2. Чтобы перевести целое положительное десятичное число в двоичную систему счисления, нужно это число разделить на 2. Полученное частное снова разделить на 2 и т.д. до тех пор, пока частное не окажется меньше 2. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример. Число 891 перевести из десятичной системы в двоичную систему счисления.

Решение:

891:2=445, 1

445:2=222, 1

222:2=111, 0

111:2=55, 1

55:2=27, 1

27:2=13, 1

13:2=6, 1

6:2=3, 0

3:2=1, 1

1:2=0, 1 (старшая цифра двоичного числа)

 

Записываем в одну строку последнее частное и все остатки, начиная с последнего.

Ответ: 89110=11011110112

Перевод десятичных дробей в двоичную систему счисления

Перевод десятичных дробей в двоичную систему счисления заключается в поиске целых частей при умножении на 2.

Пример. Переведем десятичную дробь 0,322 в двоичную систему счисления.

Чтобы найти первую после запятой цифру двоичной дроби, нужно умножить заданное число на 2 и выделить целую часть произведения.

Решение:

0,32210 8,8310

0.322*2=0.644 0 8:2=4 остаток 0

0.644*2=1.288 1 4:2=2 остаток 0

0.288*2=0.576 0 2:2=1 остаток 0

0.576*2=1.152 1 1:2=0 остаток 1

Ответ:

0,322210=0.01012 0.83*2=1.66 целая часть равна 1

0.66*2=1.32 целая часть равна 1

0.32*2=0.64 целая часть равна 0

0.64*2=1.28 целая часть равна 1

Ответ: 8,83=1000,1101

Перевод десятичных чисел в восьмеричную систему счисления

Для перевода числа из десятичной системы в восьмеричную применяется тот же прием, что и при переводе в двоичную систему.

Преобразуемое число делят на 8 по правилам десятичной системы с запоминанием остатка, который, конечно, не превышает 7. Если полученное частное больше 7, его тоже делят на 8, сохраняя остаток.

Решение:

891:8=111 3

111:8=13 7

13:8= 1 5

1: 8=0 1

(старшая цифра двоичного числа).

Ответ: 89110=15738

Перевод десятичных чисел в шестнадцатиричную систему счисления

Аналогично преобразуют десятичное число в шестнадцатеричное с той лишь разницей, что это число вместо 8 делят на 16.

Пример: Число 891 перевести из десятичной системы в шестнадцатеричную систему счисления.

Решение: остаток

891:16=55 11

55:16=3 7

3:16=0 3

89110=37B16

Самостоятельная работа студента с преподователям:

1. Задание: Представьте виде суммы степеней основания числа:

1. 42510 8. 3678,89810

2. 25610 9. 7,2908310

3. 85210 10. 0,003210

4. 124310 11. 2,358910

5. 256910 12. 48,96510

6. 456810 13. 56,89710

7. 1256810 14. 48,97510

2. Задание:Переводите десятичные числа в двоичную систему счисления:

32310 8. 12510

15010 9. 22910

28310 10. 8810

42810 11. 25510

31510 12. 32510

18110 13. 25910

17610 14. 65210

3. Задание:Переводите дробные десятичные числа в двоичную систему счисления:

0,32210 8. 37,2510

150,700610 9. 206,12510

283,24510 10. 0,38610

0,42810 11. 10,10310

315,07510 12. 8,8310

181,36910 13. 14,12510

176,52610 14. 15,7510

4. Задание:Переводите десятичные числа в восьмеричную систему счисления:

1. 32210 8. 700610

2. 52410 9. 12510

3. 283,24510 10. 22910

4. 42810 11. 8810

5. 315,07510 12. 37,2510

6. 181,36910 13. 206,12510

7. 176,52610 14. 94010

5. Задание:Переводите десятичные числа в шестнадцатиричную систему счисления:

1. 32210 8. 36910

2. 150,700610 9. 12510

3. 283,24510 10. 22910

4. 42810 11. 8810

5. 315,07510 12. 37,2510

6. 18110 13. 206,12510

7. 176,52610 14. 98,9310

Контрольные вопросы:

1. Что называют системой счисления?

2. В чем отличие позиционных систем счисления от непозиционных?

3. Что называют основанием позиционной системы счисления?

4. Что такое разряд?

 

 

Лабораторная работа №2

Тема занятия: Двоичная система счисления. Перевод чисел из двоичной системы в восьмеричную, шестнадцатиричную систему счисления. Арифметические действия над двоичными числами. (1 час), СРС (2час).

В компьютерах применяется, как правило, не десятичная, а позиционная двоичная система счисления, т.е. система счисления с основанием 2. В двоичной системе любое число записывается с помощью двух цифр 0 и 1 и называется двоичным числом.

Для того чтобы отличить двоичное число от десятичного, содержащего только цифры 0 и1, к записи двоичного числа в индексе добавляется признак двоичной системы счисления, например 110101,1112. Каждый разряд (цифру) двоичного числа называют битом.

Как и десятичное число, любое двоичное число можно записать в виде суммы, явно отражающей различие весов цифр, входящих в двоичное число 2. Например, для двоичного числа 1010101,101 сумма примет вид

1010101,1012 =1*26+0*25+1*24+0*23+1*22+0*21+1*20+1*2-1+0*2-2+1*2-3

Эта сумма записывается по тем же правилам, что и сумма для десятичного числа. В данном примере двоичное числа имеет семизначную целую и трехзначную дробную части. Поэтому старшая цифра целой части, т.е. единица, умножается на 27-1=26, следующая цифра целой части, равная нулю, умножается на 25 и т.д. по убывающим степеням двойки до младшей, третьей, цифры дробной части, которая будет умножена на 2-3. Выполняя в этой сумме арифметические операции по правилам десятичной системы, получим десятичное число 85,625. Таким образом, двоичное число 1010101,101 совпадает с десятичным числом 85,625 или 1010101,101=85,62510

1. 111000112=1×27+1×26+1×25+0×24+0×23+0×22+1×21+1×20= 128+64+32+2+1=22710

2. 0,101000112=1×2-1+0×2-2+1×2-3+0×2-4+0×2-5+0×2-6+1×2-7+1×2-8=0,5+0,125+0,0078+0,0039 =0,636710

megalektsii.ru

Online перевод десятичных чисел в шестнадцатиричную систему счисления

Введите целое положительное число в десятичной записи.

Простейший способ - перевести число в двоичную систему счисления и разбить результат на группы по 4 бита (тетрады), каждая из которых и будет кодировать одну шестнадцатиричную цифру.

Шаг i: D_i b_i bin_str hex_str
0256 = 2 * 128 + 000
1128 = 2 * 64 + 0000
264 = 2 * 32 + 00000
332 = 2 * 16 + 0 00000
416 = 2 * 8 + 00 000000
58 = 2 * 4 + 000 000000
64 = 2 * 2 + 0000 000000
72 = 2 * 1 + 0 0000 000000
81 = 2 * 0 + 11 0000 0000100
Результат в двоичной системе: 1 0000 0000
Т.к. разрядность получившейся двоичной строки не кратна 4, дополним ее слева нулевыми битами:  0001 0000 0000
Результат в шестнадцатиричной системе:100

floatingpoint.ru