Область определения функции. Определение области


Область определения функции, теория и примеры

1) Функцию можно представить в виде разности двух функций

   

Функция является многочленом и её областью определения есть множество всех действительных чисел .

Функция является дробно-рациональной. Найдем значения , которые обнуляют знаменатель

   

Таким образом, область определения функции находится из системы

   

2) Для нахождения области определения решим неравенство

   

Разложим на множители левую часть этого неравенства. Для этого решим уравнение . По теореме Виета: , отсюда . Таким образом, неравенство примет вид

   

Обозначим найденные корни на числовой оси и определим знак неравенства на полученных интервалах.

Таким образом, .

3) Функция представляет собой дробно-рациональную функцию, в числителе которой многочлен. Область определения многочлена есть множество действительных чисел . В знаменателе корень, область его определения находим из системы

   

Таким образом, .

ru.solverbook.com

Область определения - это... Что такое Область определения?

 Область определения

В данной статье приведено общее определение математической функции. В средних школах и на нематематических специальностях высших учебных заведениях изучают более простое понятие числовой функции, являющееся частным случаем математической функции.

Определения

  • Нестрогое определение: функция — это «закон», по которому каждому значению элемента x из некоторого множества X ставится в соответствие единственный элемент y из множества Y.
  • Строгое определение: функция или отображе́ние — это бинарное отношение, обладающее свойством:
  • Функция называется инъективной, если

Обозначения

Связанные определения

  • Пусть дано отображение , и . Тогда суже́нием функции F на M называется функция , определяемая равенством . Это определение подчёркивает, что фиксация области определения является частью определения функции.
  • F является продолжением функции на множество . Можно рассматривать продолжения, обладающие различными свойствами, например аналитическое продолжение.
  • Пусть . Тогда о́бразом множества M называется подмножество множества Y, определяемое равенством .
Множество F(X) называется образом отображения F и обозначается .
  • Пусть задано отображение , и y = F(x). Тогда x называется проо́бразом y, а y называется о́бразом x. Согласно определению отображения, каждый элемент должен иметь ровно один образ, но элемент может не иметь прообразов либо иметь один или несколько.
    • Например, пусть дана функция , где F(x) = x2. Тогда y = − 1 не имеет прообразов; y = 0 имеет единственный прообраз x = 0; y = 1 имеет два прообраза: x1 = 1 и x2 = − 1.
  • Пусть задано отображение , и . Тогда множество называется по́лным проо́бразом элемента y. Полный прообраз обозначается F - 1(y).
    • Например, пусть , и F(x) = sinx. Тогда .
  • Пусть . Тогда проо́бразом множества N называется подмножество множества X, определяемое равенством .
    • Например, пусть , и F(x) = cosx. Тогда , .

Свойства

Свойства прообразов и образов

  • ;
  • ;
  • ;
  • . Заметим отсутствие равенства в этом случае.

Классы функций

При необходимости можно различать отображения в зависимости от природы множеств X и Y. Если X и Y — числовые множества, такие, как или , то отображение называют функцией. Если X или Y многомерны, например, или , то отображение называют ве́ктор-фу́нкцией. Если X — произвольной природы, а Y — поле, то отображение называют функциона́лом. В специальных случаях используют и другие термины: оператор, функтор, преобразование, морфизм и т. д.

Вариации и обобщения

Функции нескольких аргументов

Определение функции легко обобщить на случай функции многих аргументов.

Пусть даны множества и множество Y, тогда упорядоченное множество всех кортежей называется функцией n аргументов тогда и только тогда, когда для любых и из следует, что .[1]

Примечания

  1. ↑ Кудрявцев Л. Д. Курс математического анализа. — том 1. — М.: Высшая школа, 1981. — с. 8.

См. также

Литература

  • Функция. Математический энциклопедический словарь. — Гл. ред. Ю. В. Прохоров. — М.: «Большая российская энциклопедия», 1995.

Wikimedia Foundation. 2010.

  • Область датского права
  • Область переписи населения

Смотреть что такое "Область определения" в других словарях:

  • область определения — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN range of definition …   Справочник технического переводчика

  • ОБЛАСТЬ ОПРЕДЕЛЕНИЯ — функции множество, на к ром задана рассматриваемая функция, т. е. совокупность X всех тех элементов х, каждому из к рых данная функция f ставит в соответствие элемент уиз нек рого множества У; таким образом, если , то Xназ. О. О. функции. Л. Д.… …   Математическая энциклопедия

  • Область определения функции — Область определения функции  множество, на котором задаётся функция. Содержание 1 Определение 2 Примеры 2.1 Числовые функции …   Википедия

  • область определения данных — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN data domain …   Справочник технического переводчика

  • область определения канала — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN channel definition area …   Справочник технического переводчика

  • область определения функции — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN domain of function …   Справочник технического переводчика

  • Естественная область определения функции — множество тех значений ее аргумента, при которых формула имеет смысл …   Википедия

  • Естественная область определения — Определения Полная аналитическая функция это совокупность всех канонических элементов, получаемых из какого либо первоначального элемента P методом аналитического продолжения относительно всех возможных жордановых кривых, допускающих такое… …   Википедия

  • Область значений функции — Область значений функции  множество значений, которые принимает функция в результате ее применения. Содержание 1 Определение 2 Примеры 2.1 Числовые функции …   Википедия

  • Область аккредитации испытательной лаборатории — совокупность работ по испытаниям, которые компетентна проводить лаборатория в зависимости от видов технических устройств, здании и сооружении и (или) видов испытаний. Источник …   Словарь-справочник терминов нормативно-технической документации

Книги

  • Проблемные инновации в обработке данных без полноценной информации об объекте исследования и ограничений на область применения, А. Е. Варшавский. В статье исследуются вопросы, связанные с проблемными инновациями в обработке данных, на примере моделей коррекции остатками, которые нашли широкое применение в первую очередь среди… Подробнее  Купить за 152 руб электронная книга
  • Задачи с параметрами. Применение свойств функций, преобразование неравенств, Локоть Владимир Владимирович. В первой части пособия рассмотрены задачи с параметрами, при решении которых используется область определения, множество значений, ограниченность и монотонностьфункций. Во второй части… Подробнее  Купить за 135 руб
  • Математика. Задачи с параметрами. Применение свойств функций, преобразование неравенств, В. В. Локоть. В первой части пособия рассмотрены задачи с параметрами, при решении которых используется область определения, множество значений, ограниченность и монотонностьфункций. Во второй части… Подробнее  Купить за 122 руб
Другие книги по запросу «Область определения» >>

dic.academic.ru

Область определения функции | Онлайн калькулятор

Данный калькулятор позволит найти область определения функции онлайн. Область определения функции y=f(x) – это множество всех значений аргумента x, на котором задана функция. Другими словами, это все x, для которых могут существовать значения y. На графике областью определения функции является промежуток, на котором есть график функции.Область определения функции f(x), как правило, обозначается как D(f). Принадлежность к определенному множеству обозначается символом ∈, а X – область определения функции. Таким образом, формула x∈X означает, что множество всех значений x принадлежит к области определения функции f(x).Приведем примеры определения основных элементарных функций. Областью определения постоянной функции y=f(x)=C является множество всех действительных чисел. Когда речь идет о степенной функции y=f(x)=xa, область определения зависит от показателя степени данной функции. При нахождении области определения функции y=f(x)= √(n&x) (корень n-ой степени) следует обращать внимание на четность или нечетность n. Областью определения логарифмической функции являются все положительные действительные числа, и она не зависит от основания логарифма. Областью определения показательной функции, также как и у постоянной функции, является множество всех действительных чисел.

Областью определения сложных функций y=f1(f2(x)) является пересечение двух множеств: x∈D(f2) и множества всех x, для которых f2(x) ∈ D(f1). Следовательно, для того чтобы найти область определения сложной функции, необходимо решить систему неравенства.Преимуществом онлайн калькулятора является то, что Вам нет необходимости знать и понимать, как находить область определения функции. Чтобы получить ответ, укажите функцию, для которой Вы хотите найти область определения. Основные примеры ввода функций для данного калькулятора указаны ниже.

Вам помог этот калькулятор? Предложения и пожелания пишите на allcalc.ru@gmail.com

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

НЕТ

Смотрите также

allcalc.ru

Область определения функции - это... Что такое Область определения функции?

Область определения функции — множество, на котором задаётся функция.

Определение

Если задана функция, которая действует из одного множества в другое, то множество, из которого действует данная функция, называется областью определения.

Более формально, пусть задано отображение , которое отображает множество в , то есть: ; тогда

  • множество называется областью определения функции
  • и обозначается , или (от англ. domain «область»).

Обычно предполагается, что , из-за чего понятие области определения выглядит тавтологией: «область определения функции — это область, где определена функция». Для того, чтобы придать чёткий смысл данному понятию, рассматривается некоторое более широкое множество, которое называется областью отправления, и тогда область определения функции  — это такое подмножество множества (которое и есть область отправления функции), где для каждого элемента определено значение функции .

Этот факт коротко записывают в виде: .

Примеры

Наиболее наглядные примеры областей определения доставляют числовые функции. Мера и функционал также доставляют важные в приложениях виды областей определения.

Числовые функции

Числовые функции — это функции, относящиеся к следующим двум классам:

  • вещественнозначные функции вещественного переменного — это функции вида ;
  • а, также, комплекснозначные функции комплексного переменного это функции вида ,

где и  — множества вещественных и комплексных чисел соответственно.

Тождественное отображение

Область определения функции совпадает с областью отправления ( или ).

Гармоническая функция

Область определения функции : представляет собой комплексную плоскость без нуля

и не совпадает с областью отправления (вся комплексная плоскость).

Дробно-рациональные функции

Область определения дробно-рациональной функции вида

представляет собой вещественную прямую или комплексную плоскость за исключением конечного числа точек, которые являются решениями уравнения

.

Эти точки называются полюсами функции .

Мера

Если каждая точка области определения функции — это некоторое множество, например, подмножество заданного множества, то говорят, задана функция множества.

Мера — пример такой функции, где в качестве области определения функции (меры) выступает некоторая совокупность подмножеств заданного множества, являющееся, например, кольцом или полукольцом множеств.

Например, определённый интеграл представляет собой функцию ориентированного промежутка.

Функционал

Пусть  — семейство отображений из множества в множество . Тогда можно определить отображение вида . Такое отображение называется функционалом.

Если, например, фиксировать некоторую точку , то можно определить функцию , которая принимает в «точке» то же значение, что и сама функция в точке .

См. также

Литература

  • Функция. Математический энциклопедический словарь. — Гл. ред. Ю. В. Прохоров. — М.: «Большая российская энциклопедия», 1995.
  • Клейн Ф. Общее понятие функции. В кн.: Элементарная математика с точки зрения высшей. Т.1. М.-Л., 1933
  • ISBN 5-02-014844-X
  • А. Н. Колмогоров, С. В. Фомин. Глава 1.. Элементы теории множеств // Элементы теории функций и функционального анализа. — 3-е изд.. — М.: Наука, 1972. — С. 14 — 18. — 256 с.
  • А. Н. Колмогоров «Что такое функция» // «Квант». — М.: «Наука», 1970. — В. 1. — С. 27-36. — ISSN 0130-2221.

dic.academic.ru

Область определения функции

Остановимся на процедуре нахождения области определе­ния функции.

1. В том случае, когда функция задана в аналитическом виде (посредством формулы)

(3.1)

и никаких ограничений или оговорок более не имеется, область ее определения устанавливается исходя из правил выполнения математических операций, входящих в формулу f в (3.1). Эти ограничения хорошо известны: подкоренное выражение в кор­не четной степени не может быть отрицательным, знаменатель дроби не может быть равным нулю, выражение под знаком ло­гарифма должно быть только

положительным, а также неко­торые другие. Приведем здесь два примера.

Пример 1. у = log2 (x2 — 5x + 6).

Область определения этой функции находится из условия x2 — 5x + 6 > 0. Поскольку x = 2 и x = 3 — корни квадратно­го трехчлена, стоящего под знаком логарифма, то это условие выполняется на двух полубесконечных интервалах: (-, 2) и (3,). На рис. 3.4 выделена заштрихованная полоса, в которой график функции отсутствует.

Рис. 3.4

Пример 2. у = arcsin .

Область определения этой функции находится из совокуп­ности двух условий: аргумент под знаком arcsin не может быть по модулю больше единицы и знаменатель аргумента не дол­жен равняться нулю, т.е.

Двойное неравенство эквивалентно двум более простым нера­венствам: х + 2 ≥ 1 и х + 2 ≤ -1. Отсюда получаем, что область определения функции состоит из двух полубесконечных проме­жутков: (-, -3] и (-1,). Запретная точках = -2 сюда не попадает. В отличие от предыдущего примера концы полуин­тервалов входят в область определения функции.

2. Область определения функции задана вместе с функцией f(x).

Пример 3. у = 3x-4­­/3 + 2, 1 ≤ х ≤ 4.

3. Функция имеет определенный прикладной характер, и область ее существования определяется также и реальными значениями входящих параметров (например, задачи с физи­ческим смыслом).

Определение 2. Функция у = f(x) называется четной (сим­метрия относительно оси Оу), если для любых значений аргу­мента из области ее определения выполнено равенство

Определение 3. Функция у = f(x) называется нечетной (симметрия относительно начала координат О), если выпол­нено условие:

Например, функции у = х2 и у = cos x являются четными, а функции у = x3 и у = sin x— нечетными.

Приложения в экономике

Приведем примеры использования функций в области эко­номики.

1. Кривые спроса и предложения. Точка равнове­сия. Рассмотрим зависимости спроса D (demand) и предложе­ния S (supply) от цены на товар Р (price). Чем меньше цена, тем больше спрос при постоянной покупательной способности населения. Обычно зависимость D от Р имеет вид ниспадаю­щей кривой (рис. 3.5, а):

(3.2)

где а < 0. В свою очередь предложение растет с увеличением цены на товар, и потому зависимость S от Р имеет следующую характерную форму:

(3.3)

где b ≥ 1 (рис. 3.5, б). В формулах (3.2) и (3.3) с и d — так называемые экзогенные величины; они зависят от внешних причин (благосостояние общества, политическая обстановка и т.п.). Вполне понятно, что переменные, входящие в формулы (3.2) и (3.3), положительны, поэтому графики функций имеют смысл только в первой координатной четверти.

Рис. 3.5

Для экономики представляет интерес условие равновесия, т.е. когда спрос равен предложению; это условие дается урав­нением

и соответствует точке пересечения кривых D и S — это так называемая точка равновесия (рис. 3.6). Цена Ро, при которой выполнено условие (3.4), называется равновесной.

Рис. 3.6

При увеличении благосостояния населения, что соответ­ствует росту величины с в формуле (3.2), точка равновесия М смещается вправо, так как кривая D поднимается вверх; при этом цена на товар растет при неизменной кривой предло­жения S.

2. Паутинная модель рынка. Рассмотрим простейшую задачу поиска равновесной цены. Это одна из основных проб­лем рынка, означающая фактически торг между производите­лем и покупателем (рис. 3.7).

Рис. 3.7

Пусть сначала цену P1 называет производитель (в прос­тейшей схеме он же и продавец). Цена P1 на самом деле выше равновесной (естественно, всякий производитель стремится по­лучить максимум выгоды из своего производства). Покупатель оценивает спрос D1 при этой цене и определяет свою цену Р2, при которой этот спрос D1 равен предложению. Цена Р2 ниже равновесной (всякий покупатель стремится купить подешев­ле). В свою очередь производитель оценивает спрос D2, соот­ветствующий цене P2, и определяет свою цену Р3, при которой спрос равен предложению; эта цена выше равновесной. Процесс торга продолжается и при определенных условиях приводит к устойчивому приближению к равновесной цене, т.е. к "скручи­ванию" спирали. Если рассматривать последовательность чисел, состоящую из называемых в процессе торга цен, то она имеет своим пределом равновесную цену Р0: Pn = P0.

studfiles.net

ОБЛАСТЬ ОПРЕДЕЛЕНИЯ - это... Что такое ОБЛАСТЬ ОПРЕДЕЛЕНИЯ?

 ОБЛАСТЬ ОПРЕДЕЛЕНИЯ

функции - множество, на к-ром задана рассматриваемая функция, т. е. совокупность X всех тех элементов х, каждому из к-рых данная функция f ставит в соответствие элемент уиз нек-рого множества У; таким образом, если , то Xназ. О. О. функции.

Л. Д. Кудрявцев.

Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.

  • ОБЛАСТЬ ЗНАЧЕНИЙ
  • ОБЛАСТЬ ЦЕЛОСТНОСТИ

Смотреть что такое "ОБЛАСТЬ ОПРЕДЕЛЕНИЯ" в других словарях:

  • область определения — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN range of definition …   Справочник технического переводчика

  • Область определения — Запрос «Отображение» перенаправляется сюда. Cм. также другие значения. В данной статье приведено общее определение математической функции. В средних школах и на нематематических специальностях высших учебных заведениях изучают более простое… …   Википедия

  • Область определения функции — Область определения функции  множество, на котором задаётся функция. Содержание 1 Определение 2 Примеры 2.1 Числовые функции …   Википедия

  • область определения данных — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN data domain …   Справочник технического переводчика

  • область определения канала — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN channel definition area …   Справочник технического переводчика

  • область определения функции — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN domain of function …   Справочник технического переводчика

  • Естественная область определения функции — множество тех значений ее аргумента, при которых формула имеет смысл …   Википедия

  • Естественная область определения — Определения Полная аналитическая функция это совокупность всех канонических элементов, получаемых из какого либо первоначального элемента P методом аналитического продолжения относительно всех возможных жордановых кривых, допускающих такое… …   Википедия

  • Область значений функции — Область значений функции  множество значений, которые принимает функция в результате ее применения. Содержание 1 Определение 2 Примеры 2.1 Числовые функции …   Википедия

  • Область аккредитации испытательной лаборатории — совокупность работ по испытаниям, которые компетентна проводить лаборатория в зависимости от видов технических устройств, здании и сооружении и (или) видов испытаний. Источник …   Словарь-справочник терминов нормативно-технической документации

Книги

  • Проблемные инновации в обработке данных без полноценной информации об объекте исследования и ограничений на область применения, А. Е. Варшавский. В статье исследуются вопросы, связанные с проблемными инновациями в обработке данных, на примере моделей коррекции остатками, которые нашли широкое применение в первую очередь среди… Подробнее  Купить за 152 руб электронная книга
  • Задачи с параметрами. Применение свойств функций, преобразование неравенств, Локоть Владимир Владимирович. В первой части пособия рассмотрены задачи с параметрами, при решении которых используется область определения, множество значений, ограниченность и монотонностьфункций. Во второй части… Подробнее  Купить за 135 руб
  • Математика. Задачи с параметрами. Применение свойств функций, преобразование неравенств, В. В. Локоть. В первой части пособия рассмотрены задачи с параметрами, при решении которых используется область определения, множество значений, ограниченность и монотонностьфункций. Во второй части… Подробнее  Купить за 122 руб
Другие книги по запросу «ОБЛАСТЬ ОПРЕДЕЛЕНИЯ» >>

dic.academic.ru

Как найти область определения функции?

Как найти область определения функции? Ученикам средних классов приходится часто сталкиваться с данной задачей.

Родителям следует помочь своим детям разобраться в данном вопросе.

Математические понятия

Задание функции.

Напомним основополагающие термины алгебры. Функцией в математике называют зависимость одной переменной от другой. Можно сказать, что это строгий математический закон, который связывает два числа определенным образом.

В математике при анализе формул числовые переменные подменяют буквенными символами. Наиболее часто используют икс («х») и игрек («у»). Переменную х называют аргументом, а переменную у — зависимой переменной или функцией от х.

Существуют различные способы задания зависимостей переменных.

Перечислим их:

  1. Аналитический тип.
  2. Табличный вид.
  3. Графическое отображение.

Аналитический способ представляют формулой. Рассмотрим примеры: у=2х+3, у=log(х), у=sin(х). Формула у=2х+3 является типичной для линейной функции. Подставляя в заданную формулу числовое значение аргумента, получаем значение y.

Табличный способ представляет собой таблицу, состоящую из двух столбцов. Первая колонка выделяется для значений икса, а в следующей графе записывают данные игрека.

Графический способ считается наиболее наглядным. Графиком называют отображение множества всех точек на плоскости.

Для построения графика применяют декартовую систему координат. Система состоит из двух перпендикулярных прямых. На осях откладывают одинаковые единичные отрезки. Отсчет производят от центральной точки пересечения прямых линий.

Независимую переменную указывают на горизонтальной линии. Ее называют осью абсцисс. Вертикальная прямая (ось ординат) отображает числовое значение зависимой переменной. Точки отмечают на пересечении перпендикуляров к данным осям. Соединяя точки между собой, получаем сплошную линию. Она являться основой графика.

Виды зависимостей переменных

Определение.

В общем виде зависимость представляется как уравнение: y=f(x). Из формулы следует, что для каждого значения числа х существует определенное число у. Величину игрека, которая соответствует числу икс, называют значением функции.

Все возможные значения, которые приобретает независимая переменная, образуют область определения функции. Соответственно, все множество чисел зависимой переменной определяет область значений функции. Областью определения являются все значения аргумента, при котором f(x) имеет смысл.

Начальная задача при исследовании математических законов состоит в нахождении области определения. Следует верно определять этот термин. В противном случае все дальнейшие расчеты будут бесполезны. Ведь объем значений формируется на основе элементов первого множества.

Область определения функции находится в прямой зависимости от ограничений. Ограничения обусловливаются невозможностью выполнения некоторых операций. Также существуют границы применения числовых значений.

При отсутствии ограничений область определения представляет собой все числовое пространство. Знак бесконечности имеет символ горизонтальной восьмерки. Все множество чисел записывается так: (-∞; ∞).

В определенных случаях массив данных состоит из нескольких подмножеств. Рамки числовых промежутков или пробелов зависят от вида закона изменения параметров.

Укажем список факторов, которые влияют на ограничения:

  • обратная пропорциональность;
  • арифметический корень;
  • возведение в степень;
  • логарифмическая зависимость;
  • тригонометрические формы.

Если таких элементов несколько, то поиск ограничений разбивают для каждого из них. Наибольшую проблему представляет выявление критических точек и промежутков. Решением задачи станет объединение всех числовых подмножеств.

Множество и подмножество чисел

О множествах.

Область определения выражают как D(f), а знак объединения представлен символом ∪. Все числовые промежутки заключают в скобки. Если граница участка не входит во множество, то ставят полукруглую скобку. В ином случае, когда число включается в подмножество, используют скобки квадратной формы.

Обратная пропорциональность выражена формулой у=к/х. График функции представляет собой кривую линию, состоящую из двух веток. Ее принято называть гиперболой.

Так как функция выражена дробью, нахождение области определения сводится к анализу знаменателя. Общеизвестно, что в математике деление на нуль запрещено. Решение задачи сводится к уравниванию знаменателя к нулю и нахождению корней.

Приведем пример:

Задается: у=1/(х+4). Найти область определения.

Решение:

  1. Приравниваем знаменатель к нулю.х+4=0
  2. Находим корень уравнения.х=-4
  3. Определяем множество всех возможных значений аргумента.D(f)=(-∞ ; -4)∪(-4; +∞)

Ответ: областью определения функции являются все действительные числа, кроме -4.

Значение числа под знаком квадратного корня не может быть отрицательным. В этом случае определения функции с корнем сводится к решению неравенства. Подкоренное выражение должно быть больше нуля.

Область определения корня связана с четностью показателя корня. Если показатель делится на 2, то выражение имеет смысл только при его положительном значении. Нечетное число показателя указывает на допустимость любого значения подкоренного выражения: как положительного, так и отрицательного.

Неравенство решают так же, как уравнение. Существует только одно различие. После перемножения обеих частей неравенства на отрицательное число следует поменять знак на противоположный.

Если квадратный корень находится в знаменателе, то следует наложить дополнительное условие. Значение числа не должно равняться нулю. Неравенство переходит в разряд строгих неравенств.

Логарифмические и тригонометрические функции

Пример.

Логарифмическая форма имеет смысл при положительных числах. Таким образом, область определения логарифмической функции аналогична функции квадратного корня, за исключением нуля.

Рассмотрим пример логарифмической зависимости: y=lоg(2x-6). Найти область определения.

Решение:

Ответ: (3; +∞).

Областью определения y=sin x и y=cos x является множество всех действительных чисел. Для тангенса и котангенса существуют ограничения. Они связаны с делением на косинус либо синус угла.

Тангенс угла определяют отношением синуса к косинусу. Укажем величины углов, при которых значение тангенса не существует. Функция у=tg x имеет смысл при всех значениях аргумента, кроме x=π/2+πn, n∈Z.

Областью определения функции y=ctg x является все множество действительных чисел, исключая x=πn, n∈Z. При равенстве аргумента числу π или кратному π синус угла равен нулю. В этих точках (асимптотах) котангенс не может существовать.

Первые задания на выявление области определения начинаются на уроках в 7 классе. При первом ознакомлении с этим разделом алгебры ученик должен четко усвоить тему.

Следует учесть, что данный термин будет сопровождать школьника, а затем и студента на протяжении всего периода обучения.

lediznaet.ru