Как найти наименьший общий знаменатель. Нахождение общего наименьшего знаменателя


Как найти НОЗ наименьший общий знаменатель?

  • Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю.

    Инструкция

    1

    Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).

    2

    Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) .

    Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

    3

    Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).

    Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю:

    2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2.

    Полезный совет

    После разложения чисел или многочленов на множители выполните проверку посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

  • Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю.

    Инструкция

    1

    Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).

    2

    Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) .

    Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

    3

    Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).

    Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю:

    2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2.

    Полезный совет

    После разложения чисел или многочленов на множители выполните проверку посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

  • Как найти наименьший общий знаменатель

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю.

    Инструкция

    1

    Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).

    2

    Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) .

    Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

    3

    Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).

    Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю:

    2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2.

    Полезный совет

    После разложения чисел или многочленов на множители выполните проверку посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

  • Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю.

    Инструкция

    1

    Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).

    2

    Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) .

    Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

    3

    Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).

    Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю:

    2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2.

    Полезный совет

    После разложения чисел или многочленов на множители выполните проверку посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

  • Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю.

    Инструкция

    1

    Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).

    2

    Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) .

    Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

    3

    Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).

    Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю:

    2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2.

    Полезный совет

    После разложения чисел или многочленов на множители выполните проверку посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

  • Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю.

    Инструкция

    1

    Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).

    2

    Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) .

    Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

    3

    Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).

    Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю:

    2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2.

    Полезный совет

    После разложения чисел или многочленов на множители выполните проверку посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

  • info-4all.ru

    Как найти НОЗ (наименьший общий знаменатель)?

    Как найти наименьший общий знаменатель Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю. Инструкция 1 Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел – это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t). 2 Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) . Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280. 3 Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1). Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю: 2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2. Полезный совет После разложения чисел или многочленов на множители выполните проверку – посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения. <img src="//otvet.imgsmail.ru/download/b6cad696a0f3d7a55b988a5b171c2962_i-24278.gif" >

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю. Инструкция 1 Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел – это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t). 2 Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) . Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280. 3 Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1). Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю: 2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2. Полезный совет После разложения чисел или многочленов на множители выполните проверку – посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю. Инструкция 1 Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел – это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t). 2 Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) . Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280. 3 Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1). Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю: 2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2. Полезный совет После разложения чисел или многочленов на множители выполните проверку – посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю. Инструкция 1 Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел – это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t). 2 Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) . Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280. 3 Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1). Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю: 2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2. Полезный совет После разложения чисел или многочленов на множители выполните проверку – посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю. Инструкция 1 Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел – это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t). 2 Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) . Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280. 3 Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1). Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю: 2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2. Полезный совет После разложения чисел или многочленов на множители выполните проверку – посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю. Инструкция 1 Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел – это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t). 2 Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) . Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280. 3 Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1). Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю: 2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2. Полезный совет После разложения чисел или многочленов на множители выполните проверку – посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю. Инструкция 1 Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел – это наименьшее положительное число, делящееся одновременно на все заданные числа. Т. е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t). 2 Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае) . Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280. 3 Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1). Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю: 2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2. Полезный совет После разложения чисел или многочленов на множители выполните проверку – посчитайте произведение всех множителей и убедитесь, что получились первоначальные значения.

    touch.otvet.mail.ru

    Как найти наименьший общий знаменатель

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их нужно привести к наименьшему всеобщему знаменателю.

    Вам понадобится

    • Для работы с алгебраическими дробями при нахождении наименьшего всеобщего знаменателя нужно знать способы разложения многочленов на множители.

    Инструкция

    1. Разглядим приведение к наименьшему всеобщему знаменателю 2-х арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Ясно, что эти две дроби дозволено привести к любому знаменателю, делящемуся на m и на t. Но обыкновенно усердствуют привести к наименьшему всеобщему знаменателю. Он равен наименьшему всеобщему кратному знаменателей m и t данных дробей. Наименьшее всеобщее кратное (НОК) чисел – это наименьшее позитивное число, делящееся единовременно на все заданные числа. Т.е. в нашем случае нужно обнаружить наименьшее всеобщее кратное чисел m и t. Обозначается как НОК (m, t). Дальше дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).

    2. Приведем пример нахождения наименьшего всеобщего знаменателя 3 дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Дальше вычисляем НОК (5, 8, 14), перемножая все числа, входящие правда бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Подметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае).Выходит, минимальный всеобщий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Тут мы получаем числа, на которые нужно умножить дроби с соответствующими знаменателями, дабы привести их к наименьшему всеобщему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

    3. Приведение к наименьшему всеобщему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности разглядим задачу на примере. Пускай даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Подметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители нужно применить способ группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).Таким образом минимальный всеобщий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему всеобщему знаменателю:2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2.

    Полезный совет Позже разложения чисел либо многочленов на множители исполните проверку – посчитайте произведение всех множителей и удостоверитесь, что получились изначальные значения.

    jprosto.ru

    Как найти наименьший общий знаменатель

    Для сложения или вычитания дробей с разными знаменателями (числа, стоящие под дробной чертой) сначала необходимо найти их наименьший общий знаменатель (НОЗ). Таким числом будет наименьшее кратное, которое встречается в списке кратных каждого знаменателя, то есть число, делящееся нацело на каждый знаменатель. Также вы можете вычислить наименьшее общее кратное (НОК) двух или более знаменателей. В любом случае речь идет о целых числах, методы нахождения которых весьма схожи. Определив НОЗ, вы сможете привести дроби к общему знаменателю, что в свою очередь позволит вам складывать и вычитать их.

    Если данные дроби имеют одинаковые знаменатели, то про эти дроби говорят, что они имеют общий знаменатель. Например, дроби  и имеют общий знаменатель 7.

    Общий знаменатель – это число, которое является знаменателем для двух и более обыкновенных дробей.

    Дроби, имеющие разные знаменатели, можно привести к общему знаменателю.

    Приведение дробей к общему знаменателю

    Приведение дробей к общему знаменателю – это замена данных дробей, имеющих разные знаменатели, на равные им дроби, у которых одинаковые знаменатели.

    Дроби можно привести либо просто к общему знаменателю, либо к наименьшему общему знаменателю.

    Приведение к наименьшему общему знаменателю выполняется следующим образом:

    1. Если данные дроби можно сократить, то, перед тем как начать выполнять приведение к общему знаменателю, сокращаем их.
    2. Находим наименьшее общее кратное знаменателей данных дробей, именно НОК и станет их наименьшим общим знаменателем.
    3. Делим НОК на знаменатели данных дробей. Этим действием мы находим дополнительный множитель для каждой из данных дробей. Дополнительный множитель – это число, на которое надо умножить члены дроби, чтобы привести её к общему знаменателю.
    4. Умножаем члены каждой дроби на свой дополнительный множитель.

    Пример. Привести к общему знаменателю дроби  и .

    1) Находим НОК знаменателей данных дробей:

    НОК (8, 12) = 24

    2) Находим дополнительные множители:

    24 : 8 = 3 (для ) и 24 : 12 = 2 (для )

    3) Умножаем члены каждой дроби на свой дополнительный множитель:

    Приведение к общему знаменателю можно записывать в более краткой форме, указывая дополнительный множитель рядом с числителем каждой дроби (сверху справа или сверху слева) и не записывая промежуточные вычисления:

    К общему знаменателю можно привести и более простым способом, умножив члены первой дроби на знаменатель второй дроби, а члены второй дроби – на знаменатель первой.

    Пример. Привести к общему знаменателю дроби  и :

    Приведение дробей к общему знаменателю используется при сложении, вычитании и сравнении дробей, у которых разные знаменатели.

     

    vseznai.info

    Как найти наименьший общий знаменатель

    Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю.

    Вам понадобится

    • Для работы с алгебраическими дробями при нахождении наименьшего общего знаменателя необходимо знать методы разложения многочленов на множители.

    Инструкция

    • Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но обычно стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее общее кратное (НОК) чисел – это наименьшее положительное число, делящееся одновременно на все заданные числа. Т.е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие множители: (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).
    • Приведем пример нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 на множители: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае).Итак, наименьший общий знаменатель дробей получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.
    • Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими дробями. Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для разложения второго знаменателя на множители необходимо применить метод группировки: 3 * y^2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).Таким образом наименьший общий знаменатель равен (y + 1) * (3 * y + 1)^2. Умножаем первую дробь на многочлен y + 1, а вторую дробь на многочлен 3 * y + 1. Получаем дроби, приведенные к наименьшему общему знаменателю:2 * x * (y + 1) / (y + 1) * (3 * y + 1)^2 и (x^2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1)^2.

    completerepair.ru

    Приведение дробей к общему знаменателю

    Что такое общий знаменатель?

    Общий знаменатель - это число, которое делится на знаменатели каждой дроби.

    Приведение дробей к ОЗ - это нахождение равных им дробей с одинаковыми знаменателями.

    Рассмотрим на примере:

    Пример Возьмем дроби  12, 13, 15. Чтобы сравнить, вычесть или сложить эти дроби, их нужно привести к общему знаменателю.

    Для этого необходимо найти наименьшее общее кратное для всех трех знаменателей. НОК (2, 3, 5) = 30. Это и есть общий знаменатель.

    Найдем во сколько раз каждый знаменатель меньшего общего и умножимкаждую дробь на это число.

    Чтобы теперь, например сравнить эти дроби, достаточно сравнить их числители.

    Правило ! Обычно дроби приводят к наименьшему общему знаменателю.

    Для некоторых дробей  ab и   cd он равен НОК ( b, d ).

    Правило приведения несократимых дробей к наименьшему общему знаменателю

    Правило 1. Разложить знаменатели дробей на простые множители;

    2. Найти дополнительные множители знаменателей;

    3. Умножить числитель и знаменатель каждой дроби на дополнительный множитель ее знаменателя.

    Пример

    Дополнительные множители:

    для 16 - 3 • 5 = 15 = НОК (16, 60) : 60

    для 60 - 2 • 2 = 4 НОК (16, 60) : 60

    formula-xyz.ru