Найдите значение числового логарифмического выражения. Логарифмические выражения как решать


Решебник Примеры для самостоятельного решения Тест Логарифмы Логарифм числа и его преобразование

Все вопросы и замечания просьба направлять по адресу raspopova@ksuchelny.ru

Решебник

Примеры для самостоятельного решения

Тест

Логарифмы

Логарифм числа и его преобразование

Определение. Логарифмом числа по основанию называется показатель степени , в которую надо возвести основание a, чтобы получить данное число .

- любое действительное число,

> 0– логарифмируемое число,

- основание логарифма, > 0 ,  1

При любом > 0 ,  1 и любых > 0, > 0 верны следующие равенства:

1.

2.

3.

4. для любого kR

5. для любого

6.

7.

8. (формула перехода к новому основанию)

9. , b  1

10. , b  1.

Замечание. Отметим важную особенность формул 1, 2, 3, 4, 5. Их правые и левые части, взятые по отдельности, определены на разных множествах значений переменных и . В формуле 1 левая часть определена лишь при > 0, а правая – для всех  R. В формулах 2 и 3 левые части определены для всех пар значений и одного знака (то есть при ), а правые – лишь для > 0 и > 0. В формуле 4 при k = 2n, где nN, n  0, левая часть определена для всех  0, правая же – только для > 0. В формуле 5 при k = 2n левая часть определена для всех и , а правая для . Отличие множеств определения следует учитывать при применении этих формул для преобразования уравнений. Оно может привести как к потере решений, так и к появлению посторонних значений неизвестных. При решении примеров на это следует обращать внимание.

Решебник

Теория

Примеры для самостоятельного решения

Тест

Пример1. Вычислить:

а) ;

б) ;

в)

Решение.

Пример 2. Вычислить:

а) ;

б) ;

в) ;

г) .

Решение.

Пример 3. Вычислить:

а) ;

б) ;

в) .

Решение.

Пример 4. Вычислить:

а) ;

б) ;

в) .

Решение:

Пример 5. Вычислить:

а) ;

б) ;

в) .

Решение.

Пример 6. Вычислить:

а) ;

б) ;

в) .

Решение:

Пример 7. Вычислить:

а) ;

б) ;

Решение:

Пример 8. Вычислить:

а) ;

б) .

Решение.

Пример 9. Вычислить:

а) ;

б) .

Решение.

Пример 10. Вычислить:

.

Решение.

Пример 11. Вычислить:

.

Решение:

Пример 12. Вычислить:

.

Решение:

Пример 13. Вычислить:

.

Решение:

Пример 14. Вычислить:

.

Решение.

Пример 15. Вычислить:

.

Решение:

Пример 16. Выразить через логарифмы по основанию 2:

а) ;

б) ;

в) .

Решение.

Пример 17. Вычислить:

.

Решение.

. для любого kR

(формула перехода к новому основанию)

Пример 18. Вычислить:

а) ;

б) .

Решение:

Пример 19. Вычислить:

.

Решение:

Пример 20. Вычислить:

.

Решение.

. , b  1

для любого kR

Пример 21. Вычислить:

.

Решение.

Пример 22. Вычислить:

.

Решение.

. , b  1
Пример 23.Вычислить выражение при условии .

Решение.

Для закрепления пройденного материала рекомендуем пройти следующий тест.

Примеры для самостоятельного решения

Теория

Решебник

Тест Вычислить: 1. а) ,

б) ,

в) .

Решение.

Ответ.

2. а) ,

б) ,

в) .

Решение.

Ответ.

3. а) ,

б) ,

в) .

Решение.

Ответ.

4. а) ,

б) ,

в) .

Решение.

Ответ.

5. а) ,

б) ,

в) .

Решение.

Ответ.

6. а) ,

б) ,

в) .

Решение.

Ответ.

7. а) ,

б) .

Решение.

Ответ.

8. а) ,

б) .

Решение.

Ответ.

9. а) ,

б) .

Решение.

Ответ.

10. .

Решение.

Ответ.

11. Выразить через логарифмы по основанию 3:

а) ,

б) ,

в) ,

г) .

Решение.

Ответ.

Вычислить: 12. а) ,

б) .

Решение.

Ответ.

13. .

Решение.

Ответ.

14. .

Решение.

Ответ.

15. .

Решение.

Ответ.

16. .

Решение.

Ответ.

17. .

Решение.

Ответ.

18. .

Решение.

Ответ.

19. .

Решение.

Ответ.

20. .

Решение.

Ответ.

21. .

Решение.

Ответ. Теория

Решебник

Примеры для самостоятельного решения

Тест

Решение

Теория

Решебник

Примеры для самостоятельного решения

Тест 1. а) .

б) .

в) .

назад к условию задачи для самостоятельного решения

2. а) .

б) .

в) .

назад к условию задачи для самостоятельного решения

3. а) .

б) .

в) .

назад к условию задачи для самостоятельного решения

4. а) .

б) .

в) .

назад к условию задачи для самостоятельного решения

5. а) .

б) .

в) .

назад к условию задачи для самостоятельного решения

6. а) .

б) .

в) .

назад к условию задачи для самостоятельного решения

7. а).

б) .

назад к условию задачи для самостоятельного решения 8. а).

б) .

назад к условию задачи для самостоятельного решения 9.а) .

б) .

назад к условию задачи для самостоятельного решения 10. .

назад к условию задачи для самостоятельного решения

11.а) .

б) .

в) .

г) .

назад к условию задачи для самостоятельного решения 12. а) .

б) .

назад к условию задачи для самостоятельного решения 13.

.

назад к условию задачи для самостоятельного решения

14. .

назад к условию задачи для самостоятельного решения

15. .

назад к условию задачи для самостоятельного решения

16. .

назад к условию задачи для самостоятельного решения

17. .

назад к условию задачи для самостоятельного решения

18. .

назад к условию задачи для самостоятельного решения

19. .

.

назад к условию задачи для самостоятельного решения

20. .

.

назад к условию задачи для самостоятельного решения

21. .

назад к условию задачи для самостоятельного решения

Теория

Решебник

Примеры для самостоятельного решения

Тест

Ответы

1. а) 6, б) 4, в) –2. назад

2. а) –1, б) –9, в) -4. назад

3. а) 2, б) , в) 1,5. назад

4. а) 9, б)25, в) 9. назад

5. а) 9, б) 49, в) . назад

6. а) , б) 3,5, в). назад

7. а) 1, б) 0. назад

8. а) 1, б) 2. назад

9. а) 2, б) 2. назад

10. 1. назад

11. а) , б) , в) , г) . назад

12. а) 5, б)2. назад

13. 890. назад

14. 24, назад

15. . назад

16. 2. назад

17. 5. назад

18. . назад

19. 4,5 назад

20. . назад

21. 0. назад

Теория

Решебник

Примеры для самостоятельного решения

Тест

mognovse.ru

Упрощение выражений, содержащих логарифмы.

В этой статье мы рассмотрим принцип упрощения выражений, содержащих логарифмы. Как обычно, мы это сделаем на примере заданий из Открытого банка заданий по математике.

Напомню несколько предварительных действий, которые сильно облегчают жизнь и помогают найти решение в ситуации, когда не знаешь с чего начать.

1. Постараться привести все логарифмы к одному основанию с помощью формулы перехода к новому основанию или вынеся степень за знак логарифма в виде коэффициента.

2. Разложить числа, стоящие под знаком логарифма на множители.

3. Десятичные дроби записать в виде обыкновенных.

4. Смешанные числа записать в виде неправильных дробей.

Итак. Рассмотрим несколько примеров решения задач из  Открытого банка заданий для подготовки к ЕГЭ  по математике.

1. Задание В10 (№26843) Найдите значение выражения  .

Ответ: 8

2. Задание В10 (№26846) Найдите значение выражения 

Запишем число 0,25 в виде обыкновенной дроби:

Ответ: -0,5

3. Задание В10 (№26847) Найдите значение выражения 

Разложим на простые множители основание логарифма и число, стоящее под знаком логарифма. Затем вынесем степени за знак логарифма.

Ответ: 1,5

4. Задание В10 (№26848) Найдите значение выражения 

Поскольку основания логарифмов равны между собой, просто применим свойство логарифмов:

Ответ: 1.

5. Задание В10(№26849) Найдите значение выражения 

Запишем десятичные дроби в виде обыкновенных и вынесем степени за знак логарифма:

Ответ: -3

6. Задание В10 (№26852) Найдите значение выражения 

Ответ: 2

7. Задание В10 (№26853) Найдите значение выражения 

Ответ: 4

8. Задание В10 (№26854) Найдите значение выражения .

Разложим 50 на простые множители и упростим показатель степени в числителе дроби:

9. Задание В10 (№26855) Найдите значение выражения 

Приведем оба логарифма к основанию 2, а затем разложим числа 12 и 6 на простые множители:

 

Обозначим , получим:

Замечание. Можно было поступить так: представим число 12 как произведение 2 и 6.

Ответ: 1

И.В. Фельдман, репетитор по математике.

 

Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр "Час ЕГЭ", попробуйте скачатьFirefox

 

ege-ok.ru

Преобразование логарифмических выражений | ЕГЭ по математике (профильной)

Логарифмом положительного числа $b$ по основанию а, где $a>0$, $a≠1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

Пример:

$log_{2}8=3$, т.к. $2^{3}=8;$

$log_{3}{1}/{27}=-3$, т.к $3^{-3}={1}/{27}$

Особенно можно выделить три формулы:

$log_{a}a=1;$

$log_{a}1=0;$

$log_{a}a^b=b.$

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b>0, a>0, a≠1$

Пример:

$4^{log_{4}5}=5;$

$3^{-2log_{3}5}={3^{log_{3}5^{-2}}}=5^{-2}={1}/{25}$

Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lg⁡b$ вместо $log_{10}b$.

Пример:

$lg100000=lg10^5=5$

Ответ: $5$

Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2.7$. При этом пишут $lnb$, вместо $log_{e}b$

Свойства логарифмов.

Все свойства логарифмов мы будем рассматривать для $a>0, a≠1, b>0, c>0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

$log{_а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{a^n}b^m={m}/{n}log_{a}b$

Пример:

$log_{3}3^{10}=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

$log_{a}(bc)=log_{a}b+log_{a}c$

Пример:

Вычислить $log_{12}2+log_{12}72$

Применим второе свойство наоборот: сумма логарифмов по одинаковому основанию равна логарифму произведения подлогарифмических выражений

$log_{12}2+log_{12}72=log_{12}2·72=log_{12}144=2$

Ответ: $2$

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

$log_{a}{b}/{c}=log_{a}b-log_{a}c$

Пример:

Вычислить $log_{5}75-log_{5}3$

Решение:

Разность логарифмов с одинаковыми основаниями равна логарифму частного подлогарифмических выражений

$log_{5}75-log_{5}3=log_{5}{75}/{3}=log_{5}25=2$

Ответ: $2$

4. При умножении двух логарифмов можно поменять местами их основания

$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a$, $b$, $c$, $d>0$, $a≠1$, $b≠1.$

5. $c^{log_{a}b}=b^{log_{a}c}$, где $а, b, c>0, a≠1$

6. Формула перехода к новому основанию

$log_{a}b={log_{c}b}/{log_{c}a}$

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

$log_{a}b={1}/{log_{b}a}$

Пример:

Найдите значение выражения: ${log_{2}∜{13}}/{log_{2}13}$

Решение:

В выражении видим, что был произведен переход к новому основанию $2$. Нам необходимо вернуться к старому основанию $13$.

${log_{2}∜{13}}/{log_{2}13}=log_{13}∜{13}$

Далее вычислим получившийся логарифм, для этого подлогарифмическое выражение необходимо представить в виде степени. Любой корень можно выразить в виде степени с дробным показателем, в знаменателе показателя будет находиться показатель корня

$∜{13}=13^{{1}/{4}}$

$log_{13}∜{13}=log_{13}13^{{1}/{4}}={1}/{4}=0.25$

Ответ: $0.25$

examer.ru

Вычисление значения логарифмического выражения

В этой статье вы познакомитесь со всеми типами логарифмических выражений из Открытого банка заданий для подготовки к ЕГЭ по математике.

16 видео помогут вам понять как использовать свойства логарифмов при упрощении логарифмических выражений.

Вы можете попытаться решить каждый пример самостоятельно, и затем свериться с ответом. А можете сначала посмотреть видео с решением аналогичного задания.

Пример 1.  Найти значение выражения:

Посмотреть ответ:

показать

Ответ: 6

Видеорешение аналогичного задания:

 

Пример 2.  Найти значение выражения: Посмотреть ответ:

показать

Ответ: 30

Видеорешение аналогичного задания:

 

Пример 3.  Найти значение выражения: Посмотреть ответ:

показать

Ответ: 0,125

Видеорешение аналогичного задания:

 

Пример 4.  Найти значение выражения: Посмотреть ответ:

показать

Ответ: 1,5

Видеорешение аналогичного задания:

 

Пример 5.  Найти значение выражения: Посмотреть ответ:

показать

Ответ: 3

Видеорешение аналогичного задания:

 

Пример 6.  Найти значение выражения:

Посмотреть ответ:

показать

Ответ: 3

Видеорешение аналогичного задания:

 

Пример 7.  Найти значение выражения:Посмотреть ответ:

показать

Ответ: 0,75

Видеорешение аналогичного задания:

 

Пример 8.  Найти значение выражения:Посмотреть ответ:

показать

Ответ: 216

Видеорешение аналогичного задания:

 

Пример 9.  Найти значение выражения:Посмотреть ответ:

показать

Ответ: 1

Видеорешение аналогичного задания:

 

Пример 10.  Найти значение выражения:Посмотреть ответ:

показать

Ответ: 0,75

Видеорешение аналогичного задания:

 

Пример 11. Найти значение выражения:Посмотреть ответ:

показать

Ответ: 1

Видеорешение аналогичного задания:

 

Пример 12.  Найти значение выражения:Посмотреть ответ:

показать

Ответ: 3

Видеорешение аналогичного задания:

 

Пример 13.  Найти значение выражения:Посмотреть ответ:

показать

Ответ: -2

Видеорешение аналогичного задания:

 

Пример 14.  Найти значение выражения:Посмотреть ответ:

показать

Ответ: 0,5625

Видеорешение аналогичного задания:

 

Пример 15.  Найти значение выражения:Посмотреть ответ:

показать

Ответ: -0,2

Видеорешение аналогичного задания:

 

Пример 16.  Найти значение выражения:

Посмотреть ответ:

показать

Ответ: 25

Видеорешение аналогичного задания:

 

 

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Логарифмирование | Логарифмы

Логарифмирование — действие, заключающееся в нахождении логарифма числа или выражения.

Логарифмирование является одним из двух действий, обратных возведению в степень. Если

   

то

   

   

Методом логарифмирования могут быть решены некоторые логарифмические уравнения.

Решение уравнения логарифмированием схематически можно описать приблизительно так.

   

ОДЗ:

   

Логарифмируем обе части уравнения по основанию a:

   

(просто приписываем к обеим частям уравнения логарифм по основанию a. a — основание логарифма, стоящего в показателе степени).

Показатель степени выносим за знак логарифма:

   

Примеры решения уравнений методом логарифмирования.

   

ОДЗ: x>0.

Логарифмируем обе части уравнения по основанию 3:

   

В левой части уравнения показатель степени выносим за знак логарифма. В правой части находим значение логарифма:

   

(Обратите внимание: показатель степени — разность. Сумму и разность при вынесении за знак логарифма обязательно нужно взять в скобки).

Полученное уравнение решаем с помощью замены переменной.

Пусть

   

тогда

   

   

   

Обратная замена:

   

Эти простейшие логарифмические уравнения решаем по определению логарифма:

   

   

Ответ: 1; 27.

   

ОДЗ: x>0.

Логарифмируем обе части уравнения по основанию 2:

   

(Обратите внимание: произведение в правой части уравнения записываем в скобках).

В левой части уравнения показатель степени выносим за знак логарифма. В правой части от логарифма произведения переходим к сумме логарифмов:

   

   

Пусть

   

тогда

   

   

Возвращаемся к исходной переменной:

   

   

   

Ответ: 1/4; 8.

   

ОДЗ:

   

Прологарифмируем обе части уравнения по основанию 10:

   

В левой части показатель степени выносим за знак логарифма. Логарифм в правой части вычисляем:

   

Замена

   

   

   

   

   

   

Обратная замена

   

   

   

Ответ:

   

   

ОЗД: x>0.

Прологарифмируем обе части уравнения по основанию 10:

   

Показатель степени вынесем за знак логарифма

   

Здесь сначала удобно раскрыть скобки

   

Замена

   

   

   

   

   

   

Ответ: 10; 0,1; 100; 0,01.

В следующий раз рассмотрим еще два вида логарифмических уравнений, сводящихся к таким уравнениям.

www.logarifmy.ru

Найдите значение числового логарифмического выражения – как решать

Формулировка задачи: Найдите значение числового логарифмического выражения.

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 5 (Вычисления и преобразования).

Рассмотрим, как решаются подобные задачи на логарифмы на примерах.

Пример задачи 1:

Найдите значение выражения log0,310 – log0,33

Решение:

Разность логарифмов с одинаковым основанием равна логарифму частного:

log0,310 – log0,33 = log0,3(10/3)

Возведем 10/3 в степень -1, вынесем степень из под логарифма (логарифм степени):

log0,3(10/3) = -log0,3(3/10) = -1

Ответ: -1

Пример задачи 2:

Найдите значение выражения log713 / log4913

Решение:

Преобразуем знаменатель: для этого вынесем степень основания из под логарифма:

log4913 = log(7)213 = 1/2 ⋅ log713

Тогда значение выражения равно:

log713 / log4913 = 2 ⋅ log713 / log713 = 2

Ответ: 2

Пример задачи 3:

Найдите значение выражения 9log550 / 9log52

Решение:

Преобразуем выражение:

9log550 / 9log52 = 9log550 – log52

Разность логарифмов с одинаковыми основаниями равна логарифму частного:

log550 – log52 = log5(50/2) = log525 = 2

Тогда значение выражения равно:

Ответ: 81

Пример задачи 4:

Найдите значение выражения 6log7∛7

Решение:

Вынесем корень за пределы логарифма:

6log7∛7 = 6 ⋅ 1/3 ⋅ log77 = 2

Ответ: 2

Пример задачи 5:

Найдите значение выражения log35 / log37 + log70,2

Решение:

Преобразуем частное с помощью формулы перехода от логарифма в одном основании к логарифму при другом основании:

Сумма логарифмов с одним основанием равна логарифму произведения:

log75 + log70,2 = log71 = 0

Ответ: 0

Пример задачи 6:

Найдите значение выражения log0,83 ⋅ log31,25

Решение:

Преобразуем второй множитель и приведем его к тому же основанию:

log31,25 = log3(5/4) = -log3(4/5) = -log30,8 = -1 / log0,83

И найдем значение выражения:

log0,83 ⋅ log31,25 = -log0,83 / log0,83 = -1

Ответ: -1

Пример задачи 7:

Найдите значение выражения 5log2549

Решение:

Вынесем степень основания логарифма за его пределы:

Внесем ее обратно как логарифм корня:

1/2 ⋅ log549 = log5(49)1/2 = log57

И воспользуемся основным логарифмическим тождеством:

Ответ: 7

Пример задачи 8:

Найдите значение выражения log4(log216)

Решение:

Вычислим значение выражения в скобках:

Тогда значение выражения равно:

Ответ: 1

Пример задачи 9:

Найдите значение выражения log42 + log0,258

Решение:

Найдем значения каждой части выражения и получим результат:

log42 =1/2 ⋅ log22 = 1/2 ⋅ 1 = 0,5

log0,258 = log1/48 = 1/2 ⋅ log1/28 = 1/2 ⋅ log1/223 = 1/2 ⋅ (-3) = -1,5

Тогда значение выражения равно:

log42 + log0,258 = 0,5 – 1,5 = -1

Ответ: -1

Пример задачи 10:

Найдите значение выражения 2log26 – 3

Решение:

Разложим число на множители:

2log26 – 3 = 2log26 ⋅ 2–3

Применим основное логарифмическое тождество к первому множителю и выполним оставшиеся вычисления:

2log26 ⋅ 2-3 = 6 ⋅ 1/8 = 0,75

Ответ: 0,75

Пример задачи 11:

Найдите значение выражения 7–2log72

Решение:

Вынесем множитель перед логарифмом в степень, чтобы избавиться от него:

–2log72 = log72–2 = log70,25

И применим основное логарифмическое тождество:

7–2log72 = 7log70,25 = 0,25

Ответ: 0,25

Пример задачи 12:

Найдите значение выражения (3log23)log32

Решение:

Если мы возведем число сначала в степень log32, а потом уже в степень log23, то сможем применить основное логарифмическое тождество:

(3log23)log32 = (3log32)log23 = 2log23 = 3

Ответ: 3

Пример задачи 13:

Найдите значение выражения (1 – log212) ⋅ (1 – log612)

Решение:

Преобразуем логарифмы:

log212 = log2(2 ⋅ 6) = log22 + log26 = 1 + log26

log612 = log6(2 ⋅ 6) = log62 + log66 = log62 + 1

Подставим полученные значения в выражение:

(1 – (1 + log26)) ⋅ (1 – (log62 + 1)) = (1 – 1 – log26) ⋅ (1 – log62 – 1) = – log26 ⋅ (– log62) = log26 ⋅ log62

Преобразуем второй множитель, чтобы логарифмы имели одинаковые основания, и выполним остальные действия:

log26 ⋅ log62 = log26 ⋅ 1/log26 = 1

Ответ: 1

Пример задачи 14:

Найдите значение выражения log318 / (2 + log32)

Решение:

Преобразуем 2 в знаменателе в логарифм с основанием 3 (возведем 3 в степень 2 и получим число под логарифмом):

Сумма логарифмов с одним основанием в знаменателе равна логарифму произведения:

2 + log32 = log39 + log32 = log3(9 ⋅ 2) = log318

Осталось сократить числитель и знаменатель:

Ответ: 1

worksbase.ru

Логарифм. Примеры

Логарифмом числа b по основанию a обозначают выражение . Вычислить логарифм значит найти такой степень x (),при котором выполняется равенство

Основные свойства логарифма

Приведенные свойства необходимо знать, поскольку, на их основе решаются практически все задачи и примеры связаны с логарифмами. Остальные экзотических свойств можно вывести путем математических манипуляций с данными формулами

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

При вычислениях формулы суммы и разности логарифмов (3,4 ) встречаются довольно часто. Остальные несколько сложные, но в ряде задач являются незаменимыми для упрощения сложных выражений и вычисления их значений.

Распространены случаи логарифмов

Одними из распространенных логарифмов такие в которых основание ровное десять, экспоненте или двойке. Логарифм по основанию десять принято называть десятичным логарифмом и упрощенно обозначать lg(x).

Из записи видно, что основы в записи не пишут. Для примера

Натуральный логарифм – это логарифм у которого за основу экспонента ( обозначают ln(x)).

Экспонента равна 2,718281828…. Чтобы запомнить экспоненту можете изучить правило: экспонента равна 2,7 и два раза год рождения Льва Николаевича Толстого. Зная это правило будете знать и точное значение экспоненты, и дату рождения Льва Толстого.

И еще один важный логарифм по основанию два обозначают

Производная от логарифм функции равна единице разделенной на переменную

Интеграл или первообразная логарифма определяется зависимостью

Приведенного материала Вам достаточно, чтобы решать широкий класс задач связанных с логарифмами и логарифмирования. Для усвоения материала приведу лишь несколько распространенных примеров из школьной программы и ВУЗов.

Примеры на логарифмы

Прологарифмировать выражения

Пример 1. а). х=10ас^2 (а>0,с>0).

По свойствам 3,5 вычисляем

2.По свойству разницы логарифмов имеем

3. Используя свойства 3,5 находим

4. где .

На вид сложное выражение с использованием ряда правил упрощается к виду

------------------------------------------

Нахождение значений логарифмов

Пример 2. Найти х, если

Решение. Для вычисления применим до последнего слагаемого 5 и 13 свойства

Подставляем в запись и скорбим

Поскольку основания равные, то приравниваем выражения

------------------------------------------

Пример 3. Пусть задано значение логарифмов

Вычислить log[a](x), если

Решение: Прологарифмируем переменную, чтобы расписать логарифм через сумму слагаемых

------------------------------------------

На этом знакомство с логарифмами и их свойствами только начинается. Упражняйтесь в вычислениях, обогащайте практические навыки - полученные знания Вам скоро понадобятся для решения логарифмических уравнений. Изучив основные методы решения таких уравнений мы расширим Ваши знания для другой не менее важной теме - логарифмические неравенства ...

yukhym.com