Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней. Квадратный корень из суммы квадратов


Свойства квадратного корня. Властивості квадратного кореня

Развернуть структуру обучения Свернуть структуру обучения
1. Квадратный корень из произведения двух неотрицательных множителей равен произведению корней из этих множителей:1. Квадратний корінь з добутку двох невід'ємних множників дорівнює добутку коренів з цих множників:

a≥0, b≥0

2. Квадратный корень из дроби, числитель которой неотрицательный, а знаменатель положительный, равен корню из числителя, разделенному на корень из знаменателя:2. Квадратний корінь з дробу, чисельник якої ненегативний, а знаменник - позитивний, дорівнює кореню з чисельника, розділеному на корінь із знаменника:

a≥0, b>0

Чтобы извлечь квадратный корень из многочлена, надо вычислить многочлен и из полученного числа извлечь корень.

Внимание! Нельзя извлекать корень из каждого слагаемого (уменьшаемого и вычитаемого) отдельно.

Например:

Щоб витягти квадратний корінь з многочлена, треба обчислити багаточлен і з отриманого числа витягти корінь.

Увага! Не можна витягати корінь з кожного додатку (зменшуваного і від’ємного) окремо.

Наприклад:

Чтобы извлечь квадратный корень из произведения (частного), можно вычислить корень квадратный из каждого множителя (делимого и делителя), а полученные значения взять произведением (частным).

Например:

Щоб витягти квадратний корінь з добутку (частки), можна обчислити корінь квадратний з кожного множника (діленого і дільника), а отримані значення взяти добутком (часткою).

Наприклад:

Чтобы извлечь квадратный корень из дроби, надо извлечь квадратный корень из числителя и знаменателя отдельно, а полученные значения оставить дробью или вычислить как частное (если возможно это по условию).

Например:

Щоб витягти квадратний корінь з дробу, треба витягти квадратний корінь з чисельника і знаменника окремо, а отримані значення залишити дробом або обчислити як частку (якщо можливо це за умовою).

Наприклад:

Из-под знака корня можно вынести множитель и можно внести множитель под знак корня. При вынесении множителя из него извлекается корень, а при внесении - он возводится в соответствующую степень.

Например:

З-під знака кореня можна винести множник і можна внести множник під знак кореня. При винесенні множника з нього витягується корінь, а при внесенні - він зводиться у відповідну ступінь.

Наприклад:

Если корень в знаменателе дроби, то такую дробь можно заменить тождественной ей дробью, не содержащей радикалов (корней) в знаменателе. Для этого умножают числитель и знаменатель дроби на такое выражение (сопряженное знаменателю), чтобы корень в знаменателе извлекался.Якщо корінь в знаменнику дробу, то такий дріб можна замінити тотожним йому дробом, що не містить радикалів (коренів) у знаменнику. Для цього множать чисельник і знаменник дробу на такий вираз (поєднане зі знаменником), щоб корінь в знаменнику видалявся.

Примеры. Приклади

1. Избавиться от радикала в знаменателе дроби:1. Позбутися від радикала в знаменнику дробу:
2. Избавиться от радикала в знаменателе дроби:2. Позбутися від радикала в знаменнику дробу:
3. Избавиться от радикала в числителе дроби:3. Позбутися від радикала в чисельнику дробу:
Освобождение дроби от радикалов в числителе (в знаменателе) дроби называется преобразованием алгебраической дроби. Звільнення дробу від радикалів у чисельнику (в знаменнику) дробу називається перетворенням алгебраїчного дробу.

Чтобы преобразовать сумму (разность) квадратных корней, нужно привести подкоренные выражения к одному основанию степени, если это возможно, извлечь корни из степеней и записать их перед знаками корней, а оставшиеся квадратные корни с одинаковыми подкоренными выражениями можно сложить, для чего складываются коэффициенты перед знаком корня и дописывается тот же квадратный корень.

Пример 4:

Щоб перетворити суму (різницю) квадратних коренів, потрібно привести підкоренні вирази до однієї основи ступеня, якщо це можливо, отримати коріння ступенів і записати їх перед знаками коренів, а решта квадратні корені з однаковими підкореними виразами можна скласти, для чого складаються коефіцієнти перед знаком кореня і дописується той же квадратний корінь.

Приклад 4:

Приведем все подкоренные выражения к основанию 2. 

Из четной степени корень извлекается полностью, из нечетной степени корень основания в степени 1 оставляем под знаком корня. 

Приводим подобные целые числа и коэффициенты складываем с одинаковыми корнями. Запишем двучлен как произведение числа и двучлена суммы.

Пример 5:

Наведемо всі підкорені вирази до основи 2. 

З парного ступеня корінь витягується повністю, з непарного ступеня корінь основи в ступені 1 залишаємо під знаком кореня. 

Наводимо подібні цілі числа і коефіцієнти складаємо з однаковим корінням. Запишемо двочлен як добуток числа і двочлена суми.

Приклад 5:

Приводим подкоренные выражения к наименьшему основанию или произведению степеней с наименьшими основаниями. Из четных степеней подкоренных выражений извлекаем корень, остатки в виде основания степени с показателем 1 или произведением таких оснований оставляем под знаком корня. Приводим подобные члены (складываем коэффициенты одинаковых корней).

Пример 6:

Наводимо підкорені вирази до найменшої основи або добутку ступенів з найменшими основами. З парних ступенів підкорених виразів витягаємо корінь, залишки у вигляді основи ступеня з показником 1 або добутком таких основ залишаємо під знаком кореня. Наводимо подібні члени (складаємо коефіцієнти однакових коренів).

Приклад 6:

Заменим деление дробей на умножение (с заменой второй дроби на обратную). Перемножим отдельно числители и знаменатели дробей. Под каждым знаком корня выделим степени. Сократим одинаковые множители в числителе и знаменателе. Извлечем корни из четных степеней.

Пример 7:

Замінимо ділення дробів на множення (з заміною другого дробу на зворотний). Перемножимо окремо чисельники і знаменники дробів. Під кожним знаком кореня виділимо ступені. Скоротимо однакові множники в чисельнику і знаменнику. Винесемо коріння з парних ступенів.

Приклад 7:

Чтобы сравнить два квадратных корня, их подкоренные выражения надо привести в степени с одинаковым основанием, тогда чем больше показать степени подкоренного выражения, тем больше значение квадратного корня.

В этом примере привести к одному основанию подкоренные выражения нельзя, так как в первом основание 3, а во втором – 3 и 7.

Второй способ сравнения состоит в том, чтобы внести коэффициент корня в подкоренное выражение и сравнить числовые значения подкоренных выражений. У квадратного корня чем больше подкоренное выражение, тем больше значение корня.

Пример 8:

Щоб порівняти два квадратних кореня, їх підкорені вирази треба привести до ступеня з однаковою основою, тоді чим більше показник степеня підкореневого виразу, тим більше значення квадратного кореня.

У цьому прикладі привести до одної основи підкорені вирази не можна, так як в першому основа 3, а у другому - 3 і 7.

Другий спосіб порівняння полягає в тому, щоб внести коефіцієнт кореня в підкореневий вираз і порівняти числові значення підкорених виразів. У квадратного кореня чим більше підкореневий вираз, тим більше значення кореня.

Приклад 8:

Используя распределительный закон умножения и правило умножения корней с одинаковыми показателями (в нашем случае – квадратных корней), получили сумму двух квадратных корней с произведением под знаком корня. Разложим 91 на простые множители и выносим корень за скобки с общими подкоренными множителями (13*5).

Мы получили произведение корня и двучлена, у которого один из одночленов целое число (1).

Пример 9:

Використовуючи розподільний закон множення і правило множення коренів з однаковими показниками (в нашому випадку - квадратних коренів), отримали суму двох квадратних коренів з добутком під знаком кореня. Розкладемо 91 на прості множники і виносимо корінь за дужки із загальними підкореневими множниками (13*5).

Ми отримали добуток кореня і двочлена, у якого один з одночленів ціле число (1). Приклад 9:

В подкоренных выражениях выделим множителями числа, из которых можно извлечь целый квадратный корень. Извлечем квадратные корни из степеней и поставим числа коэффициентами квадратных корней.

У членов данного многочлена есть общий множитель √3, который можно вынести за скобки. Приведем подобные слагаемые.

Пример 10:

У підкореневих виразах виділимо множниками числа, з яких можна отримати цілий квадратний корінь. Винесемо квадратні корені із ступенів і поставимо числа коефіцієнтами квадратних коренів.

У членів даного многочлена є спільний множник √3, який можна винести за дужки. Наводимо подібні доданки.

Приклад 10:

Произведение суммы и разности двух одинаковых оснований (3 и √5) по формуле сокращенного умножения можно записать как разность квадратов оснований.

Корень квадратный в квадрате всегда равен подкоренному выражению, поэтому мы избавимся от радикала (знака корня) в выражении.

Добуток суми і різниці двох однакових основ (3 і √5) з формули скороченого множення можна записати як різницю квадратів основ.

Корінь квадратний у квадраті завжди дорівнює підкореневому виразу, тому ми позбудемося радикала (знака кореня) у виразі.

 Квадратный корень. Квадратний корінь | Описание курса | Таблица степеней натуральных чисел 

   

profmeter.com.ua

корень квадратный из суммы квадратов

 корень квадратный из суммы квадратов

 

корень квадратный из суммы квадратов — [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

Тематики

  • энергетика в целом

EN

  • square root of the sum of the squares
  • SRSS

Справочник технического переводчика. – Интент. 2009-2013.

  • корень дерева
  • корень мандрагоры

Смотреть что такое "корень квадратный из суммы квадратов" в других словарях:

  • квадратный корень из суммы квадратов — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN root sum square …   Справочник технического переводчика

  • Метод «квадратный корень суммы квадратов» — 3.13 Метод «квадратный корень суммы квадратов» Метод оценки максимальной реакции конструкции с помощью квадратного корня суммы квадратов модальных значений реакции. Источник: ИСО 3010: Основы расчета конструкций Сейсмические воздействия на… …   Словарь-справочник терминов нормативно-технической документации

  • Метод «квадратный корень суммы квадратов» — – метод оценки максимальной реакции конструкции с помощью квадратного корня суммы квадратов модальных значений реакции. [ИСО 30103 2015] Рубрика термина: Теория и расчет конструкций Рубрики энциклопедии: Абразивное оборудование, Абразивы …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Быстрый инверсный квадратный корень — Вычисление освещения и отражения (показано на примере шутер от первого лица OpenArena) использует в коде быстрый инверсный квадратный корень для вычисления углов падения и отражения. Быстрый инверсный квадратный корень (иногда называемый Быстрый… …   Википедия

  • Быстрый обратный квадратный корень — Вычисление освещения и отражения (показано на примере шутера от первого лица OpenArena) использует в коде быстрый инверсный квадратный корень для вычисления углов падения и отражения …   Википедия

  • среднеквадратическое значение — 3.1.35 среднеквадратическое значение: Корень квадратный из среднеарифметического значения квадратов мгновенных значений величины, измеренных в течение установленного интервала времени и в установленной полосе частот. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 51317.4.7-2008: Совместимость технических средств электромагнитная. Общее руководство по средствам измерений и измерениям гармоник и интергармоник для систем электроснабжения и подключаемых к ним технических средств — Терминология ГОСТ Р 51317.4.7 2008: Совместимость технических средств электромагнитная. Общее руководство по средствам измерений и измерениям гармоник и интергармоник для систем электроснабжения и подключаемых к ним технических средств оригинал… …   Словарь-справочник терминов нормативно-технической документации

  • Пифагора теорема — Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства …   Википедия

  • Дополнительный оперативный контроль — 2.3.2.15 Дополнительный оперативный контроль . Если лаборатория анализирует пробу сложного состава, например, очень грязной сточной воды, и лаборатория не имеет опыта в устранении мешающего влияния матрицы при помощи применяемой ею методики, то… …   Словарь-справочник терминов нормативно-технической документации

  • среднеквадратическое значение гармонической группы — 3.2.4 среднеквадратическое значение гармонической группы (r.m.s. value of a harmonic group) Yg,h:Корень квадратный из суммы квадратов среднеквадратических значений гармонической составляющей и примыкающих к ней спектральных составляющих,… …   Словарь-справочник терминов нормативно-технической документации

technical_translator_dictionary.academic.ru

квадратный корень из суммы квадратов

 квадратный корень из суммы квадратов

 

квадратный корень из суммы квадратов —[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

Тематики

  • информационные технологии в целом

Справочник технического переводчика. – Интент. 2009-2013.

  • квадратный корень из
  • квадратный край

Смотреть что такое "квадратный корень из суммы квадратов" в других словарях:

  • корень квадратный из суммы квадратов — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN square root of the sum of the squaresSRSS …   Справочник технического переводчика

  • Метод «квадратный корень суммы квадратов» — 3.13 Метод «квадратный корень суммы квадратов» Метод оценки максимальной реакции конструкции с помощью квадратного корня суммы квадратов модальных значений реакции. Источник: ИСО 3010: Основы расчета конструкций Сейсмические воздействия на… …   Словарь-справочник терминов нормативно-технической документации

  • Метод «квадратный корень суммы квадратов» — – метод оценки максимальной реакции конструкции с помощью квадратного корня суммы квадратов модальных значений реакции. [ИСО 30103 2015] Рубрика термина: Теория и расчет конструкций Рубрики энциклопедии: Абразивное оборудование, Абразивы …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Быстрый инверсный квадратный корень — Вычисление освещения и отражения (показано на примере шутер от первого лица OpenArena) использует в коде быстрый инверсный квадратный корень для вычисления углов падения и отражения. Быстрый инверсный квадратный корень (иногда называемый Быстрый… …   Википедия

  • Быстрый обратный квадратный корень — Вычисление освещения и отражения (показано на примере шутера от первого лица OpenArena) использует в коде быстрый инверсный квадратный корень для вычисления углов падения и отражения …   Википедия

  • LAB — Lab  аббревиатура названия двух разных (хотя и похожих) цветовых пространств. Более известным и распространенным является CIELAB (точнее, CIE 1976 L*a*b*), другим  Hunter Lab (точнее, Hunter L, a, b). Таким образом, Lab  это… …   Википедия

  • погрешность следования летательного аппарата по траектории системы МЛС — Составляющая погрешности наведения летательного аппарата в системе МЛС, которая при управлении летательным аппаратом может привести к его смещению с заданного азимута и (или) угла места. Примечание Погрешность следования по траектории есть… …   Справочник технического переводчика

  • треугольник мощностей — P активная мощность Q реактивная мощность S полная мощность Параллельные тексты EN RU In an electrical circuit consisting of several receivers through which sinusoidal currents pass: The total active power P (W) consumed is equal to the… …   Справочник технического переводчика

  • Погрешность — 10. Погрешность По title= РМГ 29 99 ГСИ. Метрология. Основные термины и определения Источник: ГОСТ 12.1.016 79: Система станд …   Словарь-справочник терминов нормативно-технической документации

  • Погрешность следования летательного аппарата по траектории системы МЛС — 12. Погрешность следования летательного аппарата по траектории системы МЛС Path following error (PFE) Составляющая погрешности наведения летательного аппарата в системе МЛС, которая при управлении летательным аппаратом может привести к его… …   Словарь-справочник терминов нормативно-технической документации

technical_translator_dictionary.academic.ru

Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней

Факт 1.\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\)). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\), при возведении которого в квадрат мы получим число \(a\): \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\). Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\).\(\bullet\) Чему равен \(\sqrt{25}\)? Мы знаем, что \(5^2=25\) и \((-5)^2=25\). Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\)).Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\), а число \(a\) называется подкоренным выражением.\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\), \(\sqrt{-4}\) и т.п. не имеют смысла.  

Факт 2.Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\): \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.Какие действия можно выполнять с квадратными корнями?\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\), то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\), а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\), а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\). Дальше это выражение, к сожалению, упростить никак нельзя   \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл)Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\);   \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\);   \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\).   \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.Рассмотрим пример. Найдем \(\sqrt{44100}\). Так как \(44100:100=441\), то \(44100=100\cdot 441\). По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\), то есть \(441=9\cdot 49\).Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\)). Так как \(5=\sqrt{25}\), то \[5\sqrt2=\sqrt{25}\cdot \sqrt2=\sqrt{25\cdot 2}=\sqrt{50}\] Заметим также, что, например,1) \(\sqrt2+3\sqrt2=4\sqrt2\),2) \(5\sqrt3-\sqrt3=4\sqrt3\)3) \(\sqrt a+\sqrt a=2\sqrt a\).

 

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\). Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\)). А мы знаем, что это равно четырем таким числам \(a\), то есть \(4\sqrt2\).  

Факт 4.\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\), поэтому \(\sqrt{16}=4\). А вот извлечь корень из числа \(3\), то есть найти \(\sqrt3\), нельзя, потому что нет такого числа, которое в квадрате даст \(3\).Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\)), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\)) и т.д.\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\).Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.  

Факт 5.\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\), равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\). \(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\).Пример: \(|5|=5\); \(\qquad |\sqrt2|=\sqrt2\).   \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\).Пример: \(|-5|=-(-5)=5\); \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\).Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\), модуль оставляет без изменений.НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\), про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\).   \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\). Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\), а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\)!   Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\), т.к. \(-\sqrt2<0\);

 

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\).   \(\bullet\) Так как \(\sqrt{a^2}=|a|\), то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.Пример:1) \(\sqrt{4^6}=|4^3|=4^3=64\)2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\); но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

 

Факт 6.Как сравнить два квадратных корня?\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\), то \(a<b\); если \(\sqrt a=\sqrt b\), то \(a=b\).Пример:1) сравним \(\sqrt{50}\) и \(6\sqrt2\). Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\). Таким образом, так как \(50<72\), то и \(\sqrt{50}<\sqrt{72}\). Следовательно, \(\sqrt{50}<6\sqrt2\).2) Между какими целыми числами находится \(\sqrt{50}\)?Так как \(\sqrt{49}=7\), \(\sqrt{64}=8\), а \(49<50<64\), то \(7<\sqrt{50}<8\), то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\).3) Сравним \(\sqrt 2-1\) и \(0,5\). Предположим, что \(\sqrt2-1>0,5\): \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\[1ex] &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\[1ex] &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\).Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)!   \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\[1ex] &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел!   \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.Возьмем \(\sqrt{28224}\). Мы знаем, что \(100^2=10\,000\), \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\). Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\).Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\)). Также из таблицы квадратов знаем, что \(11^2=121\), \(12^2=144\) и т.д., тогда \(110^2=12100\), \(120^2=14400\), \(130^2=16900\), \(140^2=19600\), \(150^2=22500\), \(160^2=25600\), \(170^2=28900\). Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\). Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\).Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\)? Это \(2^2\) и \(8^2\). Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\):\(162^2=162\cdot 162=26224\)\(168^2=168\cdot 168=28224\).Следовательно, \(\sqrt{28224}=168\). Вуаля!

shkolkovo.net

Как складывать квадратные корни

Квадратным корнем из числа X называется число A, которое в процессе умножения самого на себя (A * A) может дать число X. Т.е. A * A = A2 = X, и √X = A.

Над квадратными корнями (√x), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x - √y). А потом привести корни к их простейшей форме - если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя. Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1. Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9. Первое число 4 является квадратом числа 2. Второе число 9 является квадратом числа 3. Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5. Все, пример решен. Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54.

Раскладываем числа на множители: 24 = 2 * 2 * 2 * 3,54 = 2 * 3 * 3 * 3.

В числе 24 мы имеем множитель 4, его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9.

Получаем равенство: √24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6.

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней – это знаменатель дроби, например, A / (√a + √b). Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе». Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a - √b.

Формулу сокращённого умножения мы теперь получаем в знаменателе: (√a + √b) * (√a - √b) = a – b.

Аналогично, если в знаменателе имеется разность корней: √a - √b, числитель и знаменатель дроби умножаем на выражение √a + √b.

Возьмём для примера дробь: 4 / (√3 + √5) = 4 * (√3 - √5) / ( (√3 + √5) * (√3 - √5) ) = 4 * (√3 - √5) / (-2) = 2 * (√5 - √3).

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5). Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 - √5.

Получаем:

12 / (√2 + √3 + √5) = 12 * (√2 + √3 - √5) / (2 * √6) = 2 * √3 + 3 * √2 - √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5.

В итоге получаем:

√7 + √5 ≈ 2,65 + 2,24 = 4,89.

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

imdiv.com

Квадратный корень из 3 - это... Что такое Квадратный корень из 3?

Квадратный корень из числа 3 — положительное действительное число, которое при умножении само на себя даёт число 3.

Его приблизительным значением с 69 цифрами после запятой является:

Округленное значение 1.732 является правильным с точностью до 0,01 %. Приблизительной правильной дробью является (1,7321 42857…).

Квадратный корень из 3 является иррациональным числом. Также известен как Феодоровская постоянная, названная в честь Феодора Киренского.

Может быть выражен в виде непрерывной дроби [1; 1, 2, 1, 2, 1, 2, …].

Геометрия

Квадратный корень из 3 равен длине между параллельными сторонами правильного шестиугольника со сторонами 1.

Если равносторонний треугольник со сторонами длиной 1 делится на две равные половины, пересечением внутреннего угла для составления прямого угла с одной стороной, то получившийся прямоугольный треугольник имеет гипотенузу со стороной 1 и катеты длиной 1/2 и Поэтому тангенс 60° равен

Так же, это расстояние между параллельными сторонами правильного шестиугольника со сторонами 1.

является длиной диагонали куба со стороной 1.

Использование в других областях

Энергетика

При трехфазной системе токов модуль напряжения между двумя фазами (линейное напряжение) в больше модуля фазного напряжения

См. также

Ссылки

dvc.academic.ru

Квадратный корень из 2 - это... Что такое Квадратный корень из 2?

Квадратный корень из 2 равен длине гипотенузы в прямоугольном треугольнике с длиной катетов 1.

Квадратный корень из числа 2 — положительное вещественное число, которое при умножении само на себя даёт число 2. Обозначение: Приведём значение корня из 2 с 65 знаками после запятой:

1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737 99…

Геометрически корень из 2 можно представить как длину диагонали квадрата со стороной 1 (это следует из теоремы Пифагора). Вероятно, это было первое известное в истории математики иррациональное число (то есть число, которое нельзя точно представить в виде дроби).

Квадратный корень из 2.

Хорошим и часто используемым приближением к является дробь . Несмотря на то, что числитель и знаменатель дроби лишь двузначные целые, оно отличается от реального значения меньше, чем на 1/10000.

История

Вавилонская глиняная табличка с примечаниями.

Вавилонская глиняная табличка (ок. 1800—1600 до н. э.) даёт приближённое значение в четырёх шестидесятеричных цифрах, что составляет 8 десятичных цифр:

Другое раннее приближение этого числа в древнеиндийском математическом тексте, Шульба-сутры (ок. 800—200 до н. э.) даётся следующим образом:

Пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, или на современном языке, что квадратный корень из двух является иррациональным. Мало что известно с определённостью о времени и обстоятельствах этого выдающегося открытия, но традиционно его авторство приписывается Гиппасу из Метапонта.

Алгоритмы вычисления

Существует множество алгоритмов для вычисления значения квадратного корня из двух. В результате алгоритма получается приблизительное значение в виде обыкновенной или десятичной дроби. Самый популярный алгоритм для этого, который используется во многих компьютерах и калькуляторах, это вавилонский метод вычисления квадратных корней. Он состоит в следующем:

Чем больше повторений в алгоритме (то есть, чем больше «n»), тем лучше приближение квадратного корня из двух. Каждое повторение приблизительно удваивает количество правильных цифр. Приведём несколько первых приближений:

  • 3/2 = 1.5
  • 17/12 = 1.416…
  • 577/408 = 1.414215…
  • 665857/470832 = 1.4142135623746…

В 1997 году Ясумаса Канада вычислил значение √2 до 137,438,953,444 десятичных знаков после запятой. В феврале 2007 года рекорд был побит: Шигеру Кондо вычислил 200 миллиардов десятичных знаков после запятой в течение 13 дней и 14 часов, используя процессор 3.6 GHz с 16 ГБ ОЗУ. Среди математических констант только было вычислено более точно.

Свойства квадратного корня из двух

Половина √2 приблизительно равна 0.70710 67811 86548; эта величина даёт в геометрии и тригонометрии координаты единичного вектора,образующего угол 45° с координатными осями:

Одно из интересных свойств √2 состоит в следующем:

.Потому что

Это является результатом свойства серебряного сечения.

Другое интересное свойство √2:

Квадратный корень из двух может быть выражен в мнимых единицах i используя только квадратные корни и арифметические операции:

и

Квадратный корень из 2 является единственным числом, отличным от 1, чья бесконечная тетрация равна его квадрату.

Квадратный корень из двух может быть также использован для приближения π:

С точки зрения высшей алгебры, является корнем многочлена и поэтому является целым алгебраическим числом. Множество чисел вида , где — рациональные числа, образует алгебраическое поле. Оно обозначается и является подполем поля вещественных чисел.

Доказательство иррациональности

Применим доказательство от противного: допустим, рационален, то есть представляется в виде несократимой дроби , где и — целые числа. Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пусть , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и — иррациональное число.

Непрерывная дробь

Квадратный корень из двух может быть представлен в виде непрерывной дроби:

Подходящие дроби данной непрерывной дроби дают приближённые значения, быстро сходящиеся к точному квадратному корню из двух. Способ их вычисления прост: если обозначить предыдущую подходящую дробь , то последующая имеет вид . Скорость сходимости здесь меньше, чем у метода Ньютона, но вычисления гораздо проще. Выпишем несколько первых приближений:

Квадрат последней приведенной дроби равен (округлённо) 2,000000177.

Размер бумаги

Квадратный корень из двух является пропорцией формата бумаги ISO 216. Соотношение сторон таково, что при разрезании листа пополам параллельно его короткой стороне получатся два листа той же пропорции.

См. также

3dic.academic.ru