Как найти НОК (наименьшее общее кратное). Кратное чисел как найти


Делители и кратные числа

Тема «Кратные числа» изучается в 5 классе общеобразовательной школы. Ее целью является совершенствование письменных и устных навыков математических вычислений. На этом уроке вводятся новые понятия - «кратные числа» и «делители», отрабатывается техника нахождения делителей и кратных натурального числа, умение находить НОК различными способами.

Эта тема является очень важной. Знания по ней можно применить при решении примеров с дробями. Для этого нужно найти общий знаменатель путем расчета наименьшего общего кратного (НОК).

Кратным А считается целое число, которое делится на А без остатка.

18:2=9

Каждое натуральное число имеет бесконечное количество кратных ему чисел. Наименьшим считается оно само. Кратное не может быть меньше самого числа.

Задача

Нужно доказать, что число 125 кратно числу 5. Для этого нужно первое число разделить на второе. Если 125 делится на 5 без остатка, то ответ положительный.

Все натуральные числа можно разделить на 1. Кратное является делителем для себя самого.

Как мы знаем, числа при делении называются «делимое», «делитель», «частное».

27:9=3,

где 27 – делимое, 9 – делитель, 3 – частное.

Числа, кратные 2, – это те, которые при делении на два не образуют остатка. К ним относятся все четные.

кратное число

Числа, кратные 3, – это такие, которые без остатка делятся на 3 (3, 6, 9, 12, 15…).

Например, 72. Это число кратно числу 3, потому что делится на 3 без остатка (как известно, число делится на 3 без остатка, если сумма его цифр делится на 3)

сумма 7+2=9; 9:3=3.

Является ли число 11 кратным 4?

11:4=2 (остаток 3)

Ответ: не является, так как есть остаток.

Общее кратное двух или более целых чисел - это такое, которое делится на эти числа без остатка.

К(8) = 8, 16, 24...

К(6) = 6, 12, 18, 24...

К(6,8) = 24

числа кратные 3

НОК (наименьшее общее кратное) находят следующим способом.

Для каждого числа необходимо отдельно выписать в строку кратные числа - вплоть до нахождения одинакового.

НОК (5, 6) = 30.

Данный способ применим для небольших чисел.

При расчёте НОК встречаются особые случаи.

1. Если необходимо найти общее кратное для 2-х чисел (например, 80 и 20), где одно из них (80) делится без остатка на другое (20), то это число (80) и есть наименьшее кратное этих двух чисел.

НОК (80, 20) = 80.

2. Если два простых числа не имеют общего делителя, то можно сказать, что их НОК – это произведение этих двух чисел.

НОК (6, 7) = 42.

Рассмотрим последний пример. 6 и 7 по отношению к 42 являются делителями. Они делят кратное число без остатка.

42:7=6

42:6=7

В этом примере 6 и 7 являются парными делителями. Их произведение равно самому кратному числу (42).

6х7=42

Число называется простым, если делится только само на себя или на 1 (3:1=3; 3:3=1). Остальные называются составными.

В другом примере нужно определить, является ли 9 делителем по отношению к 42.

42:9=4 (остаток 6)

Ответ: 9 не является делителем числа 42, потому что в ответе есть остаток.

Делитель отличается от кратного тем, что делитель – это то число, на которое делят натуральные числа, а кратное само делится на это число.

Наибольший общий делитель чисел a и b, умноженный на их наименьшее кратное, даст произведение самих чисел a и b.

А именно: НОД (а, b) х НОК (а, b) = а х b.

Общие кратные числа для более сложных чисел находят следующим способом.

Например, найти НОК для 168, 180, 3024.

Эти числа раскладываем на простые множители, записываем в виде произведения степеней:

168=2³х3¹х7¹

180=2²х3²х5¹

3024=2⁴х3³х7¹

Дальше выписываем все представленные основания степеней с самыми большими показателями и перемножаем их:

2⁴х3³х5¹х7¹=15120

НОК (168, 180, 3024) = 15120.

fb.ru

Как найти наименьшее общее кратное (НОК)

Рассмотрим три способа нахождения наименьшего общего кратного.

Нахождение путём разложения на множители

Первый способ заключается в нахождении наименьшего общего кратного путём разложения данных чисел на простые множители.

Допустим, нам требуется найти НОК чисел: 99, 30 и 28. Для этого разложим каждое из этих чисел на простые множители:

Чтобы искомое число делилось на 99, на 30 и на 28, необходимо и достаточно, чтобы в него входили все простые множители этих делителей. Для этого нам необходимо взять все простые множители этих чисел в наибольшей встречающейся степени и перемножить их между собой:

22 · 32 · 5 · 7 · 11 = 13 860

Таким образом, НОК (99, 30, 28) = 13 860. Никакое другое число меньше 13 860 не делится нацело на 99, на 30 и на 28.

Чтобы найти наименьшее общее кратное данных чисел, нужно разложить их на простые множители, затем взять каждый простой множитель с наибольшим показателем степени, с каким он встречается, и перемножить эти множители между собой.

Так как взаимно простые числа не имеют общих простых множителей, то их наименьшее общее кратное равно произведению этих чисел. Например, три числа: 20, 49 и 33 – взаимно простые. Поэтому

НОК (20, 49, 33) = 20 · 49 · 33 = 32 340.

Таким же образом надо поступать, когда отыскивается наименьшее общее кратное различных простых чисел. Например, НОК (3, 7, 11) = 3 · 7 · 11 = 231.

Нахождение путём подбора

Второй способ заключается в нахождении наименьшего общего кратного путём подбора.

Пример 1. Когда наибольшее из данных чисел делится нацело на другие данные числа, то НОК этих чисел равно большему из них. Например, дано четыре числа: 60, 30, 10 и 6. Каждое из них делится нацело на 60, следовательно:

НОК (60, 30, 10, 6) = 60

В остальных случаях, чтобы найти наименьшее общее кратное используется следующий порядок действий:

  1. Определяем наибольшее число из данных чисел.
  2. Далее находим числа, кратные наибольшему числу, умножая его на натуральные числа в порядке их возрастания и проверяя делятся ли на полученное произведение остальные данные числа.

Пример 2. Дано три числа 24, 3 и 18. Определяем самое большое из них – это число 24. Далее находим числа кратные 24, проверяя делится ли каждое из них на 18 и на 3:

24 · 1 = 24 – делится на 3, но не делится на 18.

24 · 2 = 48 – делится на 3, но не делится на 18.

24 · 3 = 72 – делится на 3 и на 18.

Таким образом, НОК (24, 3, 18) = 72.

Нахождение путём последовательного нахождения НОК

Третий способ заключается в нахождении наименьшего общего кратного путём последовательного нахождения НОК.

НОК двух данных чисел равно произведению этих чисел, поделённого на их наибольший общий делитель.

Пример 1. Найдём НОК двух данных чисел: 12 и 8. Определяем их наибольший общий делитель: НОД (12, 8) = 4. Перемножаем данные числа:

12 · 8 = 96.

Делим произведение на их НОД:

96 : 4 = 24.

Таким образом, НОК (12, 8) = 24.

Чтобы найти НОК трёх и более чисел используется следующий порядок действий:

  1. Сначала находят НОК каких-нибудь двух из данных чисел.
  2. Потом, НОК найденного наименьшего общего кратного и третьего данного числа.
  3. Затем, НОК полученного наименьшего общего кратного и четвёртого числа и т. д.
  4. Таким образом поиск НОК продолжается до тех пор, пока есть числа.

Пример 2. Найдём НОК трёх данных чисел: 12, 8 и 9. НОК чисел 12 и 8 мы уже нашли в предыдущем примере (это число 24). Осталось найти наименьшее общее кратное числа 24 и третьего данного числа – 9. Определяем их наибольший общий делитель: НОД (24, 9) = 3. Перемножаем НОК с числом 9:

24 · 9 = 216.

Делим произведение на их НОД:

216 : 3 = 72.

Таким образом, НОК (12, 8, 9) = 72.

naobumium.info

Наименьшее общее кратное трех чисел. Как найти наименьшее общее кратное трех чисел? Найдите наименьшее общее кратное чисел 168, 231 и 60

Наименьшее общее кратное трех чисел

Как найти наименьшее общее кратное трех чисел?

Примерно так, как находят наименьшее общее кратное двух чисел.

Наименьшее общее кратное трех чисел пример.

Найдите наименьшее общее кратное чисел 168, 231 и 60

Найти нок чисел 168, 231 и 60.

Как найти наименьшее общее кратное трех чисел 168, 231 и 60?

Сначала нужно разложить эти три числа на простые множители.

Разложить на простые множители число 231:

231  3
 77  7
 11  11
  1 

Разложение на простые множители числа 231:

231 = 3 * 7 * 11

Разложить на простые множители число 168:

168  3
 56  7
  8  2
  4  2
  2  2
  1 

Разложение на простые множители числа 168:

168 = 2 * 2 * 2 * 3 * 7

Разложить на простые множители число 60:

60  3
20  2
10  5
 2  2
 1 

Разложение на простые множители числа 60:

60 = 2 * 2 * 3 * 5

Теперь берем разложение на простые множители числа 231:

3 * 7 * 11

и добавляем в него множители из разложений чисел 168 и 60, но только такие множители, которых нет в разложении 231.

Из разложения числа 168 добавим множители 2, 2, 2:

2 * 2 * 2 * 3 * 7 * 11

Из разложения числа 60 добавим множитель 5:

2 * 2 * 2 * 3 * 5 * 7 * 11

Полученное произведение и есть наименьшее общее кратное чисел 168, 231 и 60:

2 * 2 * 2 * 3 * 5 * 7 * 11 = 9240

Ответ: нок чисел 168, 231 и 60 равен 9240:

НОК(231, 168, 60) = 9240

www.sbp-program.ru

ПРИЗНАКИ ДЕЛИМОСТИ чисел, кратность чисел с примерами

Признаки делимости чисел на 2, 3, 4, 5, 6, 8, 9, 10, 11, 25 и другие числа полезно знать для быстрого решения задач на Цифровую запись числа. Вместо того, чтобы делить одно число на другое, достаточно проверить ряд признаков, на основании которых можно однозначно определить, делится ли одно число на другое нацело (кратно ли оно) или нет.

Основные признаки делимости

Приведем основные признаки делимости чисел:

  • Признак делимости числа на «2» Число делится нацело на 2, если число является четным (последняя цифра равна 0, 2, 4, 6 или 8)Пример: Число 1256 кратно 2, поскольку оно заканчивается на 6. А число 49603 не делится нацело на 2, поскольку оно заканчивается на 3.
  • Признак делимости числа на «3» Число делится нацело на 3, если сумма его цифр делится на 3Пример: Число 4761 делится на 3 нацело, поскольку сумма его цифр равна 18 и она делится на 3. А число 143 не кратно 3, поскольку сумма его цифр равна 8 и она не делится на 3.
  • Признак делимости числа на «4» Число делится нацело на 4, если последние две цифры числа равны нулю или число, составленное из двух последних цифр, делится на 4Пример: Число 2344 кратно 4, поскольку 44 / 4 = 11. А число 3951 не делится нацело на 4, поскольку 51 на 4 не делится.
  • Признак делимости числа на «5» Число делится нацело на 5, если последняя цифра числа равна 0 или 5Пример: Число 5830 делится нацело на 5, поскольку оно заканчивается на 0. А число 4921 не делится на 5 нацело, поскольку оно заканчивается на 1.
  • Признак делимости числа на «6» Число делится нацело на 6, если оно делится нацело на 2 и на 3Пример: Число 3504 кратно 6, поскольку оно заканчивается на 4 (признак делимости на 2) и сумма цифр числа равна 12 и она делится на 3 (признак делимости на 3). А число 5432 на 6 нацело не делится, хотя число заканчивается на 2 (соблюдается признак делимости на 2), однако сумма цифр равна 14 и она не делится на 3 нацело.
  • Признак делимости числа на «8» Число делится нацело на 8, если три последние цифры числа равны нулю или число, составленное из трех последних цифр числа, делится на 8Пример: Число 93112 делится нацело на 8, поскольку число 112 / 8 = 14. А число 9212 не кратно 8, поскольку 212 не делится на 8.
  • Признак делимости числа на «9» Число делится нацело на 9, если сумма его цифр делится на 9Пример: Число 2916 кратно 9, поскольку сумма цифр равна 18 и она делится на 9. А число 831 не делится на 9 нацело, поскольку сумма цифр числа равна 12 и она не делится на 9.
  • Признак делимости числа на «10» Число делится нацело на 10, если оно заканчивается на 0Пример: Число 39590 делится на 10 нацело, поскольку оно заканчивается на 0. А число 5964 не делится на 10 нацело, поскольку оно заканчивается не на 0.
  • Признак делимости числа на «11» Число делится нацело на 11, если сумма цифр, стоящих на нечетных местах, равна сумме цифр, стоящих на четных местах или суммы должны отличаться на 11Пример: Число 3762 делится нацело на 11, поскольку 3 + 6 = 7 + 2 = 9. А число 2374 на 11 не делится, поскольку 2 + 7 = 9, а 3 + 4 = 7.
  • Признак делимости числа на «25» Число делится нацело на 25, если оно заканчивается на 00, 25, 50 или 75Пример: Число 4950 кратно 25, поскольку оно заканчивается на 50. А 4935 не делится на 25, поскольку заканчивается на 35.

Признаки делимости на составное число

Чтобы узнать, делится ли заданное число на составное, нужно разложить это составное число на взаимно простые множители, признаки делимости которых известны. Взаимно простые числа - это числа, не имеющие общих делителей кроме 1. Например, число делится нацело на 15, если оно делится нацело на 3 и на 5.

Рассмотрим другой пример составного делителя: число делится нацело на 18, если оно делится нацело на 2 и 9. В данном случае нельзя раскладывать 18 на 3 и 6, поскольку они не являются взаимно простыми, так как имеют общий делитель 3. Убедимся в этом на примере.

Число 456 делится на 3, так как сумма его цифр равна 15, и делится на 6, так как оно делится и на 3 и на 2. Но если разделить 456 на 18 вручную, то получится остаток. Если же для числа 456 проверять признаки делимости на 2 и 9, сразу же видно, что оно делится на 2, но не делится на 9, так как сумма цифр числа равна 15 и она не делится на 9.

worksbase.ru

НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ, алгоритм как найти НОК

Наименьшее общее кратное чисел – это наименьшее число, которое делится на все заданные числа.

Алгоритм поиска НОК

Вычисление НОК похоже на поиск НОД. Чтобы найти наименьшее общее кратное, нужно использовать следующий алгоритм:

  1. Разложить все числа на простые множители, используя признаки делимости чисел.
  2. Найти совпадающие множители во всех числах и выписать их.
  3. Выписать все несовпадающие множители.
  4. Перемножить все выписанные множители.

Если среди множителей чисел не были найдены одинаковые, НОК числа находится перемножением этих чисел.

Примеры поиска наименьшего общего кратного

Рассмотрим, как найти НОК с помощью алгоритма на нескольких примерах.

Пример 1:

Найдите наименьшее общее кратное чисел 420 и 990.

Решение:

Разложим оба числа на простые множители:

Получили, что:

420 = 2 ⋅ 2 ⋅ 3 ⋅ 5 ⋅ 7

990 = 2 ⋅ 3 ⋅ 3 ⋅ 5 ⋅ 11

Выпишем все совпадающие множители:

Выпишем все несовпадающие множители:

2, 7 – из первого числа

3, 11 – из второго числа

Перемножим полученные множители:

2 ⋅ 3 ⋅ 5 ⋅ 2 ⋅ 7 ⋅ 3 ⋅ 11 = 13860

Ответ: 13860

Пример 2

Найдите наименьшее общее кратное чисел 96 и 378.

Решение:

Разложим оба числа на простые множители:

Получили, что:

96 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3

378 = 2 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 7

Выпишем все совпадающие множители:

Выпишем все несовпадающие множители:

2, 2, 2, 2 – из первого числа

3, 3, 7 – из второго числа

Перемножим полученные множители:

НОК = 2 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 7 = 6048

Ответ: 6048

Пример 3:

Найдите наименьшее общее кратное чисел 330 и 343.

Решение:

Разложим оба числа на простые множители:

Получили, что:

330 = 2 ⋅ 3 ⋅ 5 ⋅ 11

343 = 7 ⋅ 7 ⋅ 7

Совпадающих множителей у этих 2 чисел нет, поэтому для получения НОК будет достаточно перемножить исходные числа:

НОК = 330 ⋅ 343 = 113190

Ответ: 113190

worksbase.ru

Наименьшее общее кратное двух, трех и более чисел

Данный калькулятор предназначен для нахождения наименьшего общего кратного двух, трех и более чисел онлайн.Кратное числа n – это число, которое делится на данное число n без остатка. Число может иметь бесконечное число кратных.Несколько чисел могут иметь одинаковые кратные, которые будут называться общими кратными чисел.

Среди общих кратных выделяют наименьшее из них. Наименьшее общее кратное (сокращенно НОК) двух, трех и более чисел – наименьшее число, которое делится без остатка на каждое из этих чисел. Нахождение наименьшего общего кратного полезно, например, при сложении и вычитании дробей, когда необходимо найти общий знаменатель дробей.

Для тех пользователей, кого интересует вопрос, как находить наименьшее общее кратное двух, трех и более чисел самостоятельно, представим последовательность решения данной задачи двумя способами. Первый способ хорошо применим для небольших чисел. Он заключается в выписывании кратных для всех чисел до тех пор, пока не найдется одинаковое, наименьшее из них. Второй способ сложнее и состоит из нескольких этапов, но при этом он применим для больших чисел. Во-первых, необходимо разложить числа на простые множители. Во-вторых, составляется произведение из всех найденных простых множителей. В-третьих, необходимо исключить общие множители, которые присутствуют в разложении чисел. В-четвертых, перемножив оставшиеся простые множители, получаем наименьшее общее кратное.

Чтобы найти наименьшее общее кратное нескольких чисел, проще всего использовать данный калькулятор, так как самостоятельные расчеты займут слишком много времени и усилий, особенно это касается большого количества больших чисел. Просто введите числа в соответствующие ячейки калькулятора и нажмите кнопку «Вычислить».

Выберете количество чисел 2345678910

Введите числа:

НОК  
Вам помог этот калькулятор? Предложения и пожелания пишите на allcalc.ru@gmail.com

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

НЕТ

Смотрите также

allcalc.ru

Найти наименьшее общее кратное (НОК)

Общее кратное для двух целых чисел - это такое целое число, которое делится нацело без остатка на оба заданных числа.

Наименьшее общее кратное для двух целых чисел - это наименьшее из всех целых чисел, которое делится нацело и без остатка на оба заданных числа.

Способ 1. Найти НОК можно, по очереди, для каждого из заданных чисел, выписывая в порядке возрастания все числа, которые получаются путем их умножения на 1, 2, 3, 4 и так далее.

Пример для чисел 6 и 9. Умножаем число 6, последовательно, на 1, 2, 3, 4, 5. Получаем: 6, 12, 18, 24, 30 Умножаем число 9, последовательно, на 1, 2, 3, 4, 5. Получаем: 9, 18, 27, 36, 45 Как видно, НОК для чисел 6 и 9 будет равно 18.

Данный способ удобен, когда оба числа небольшие и их несложно умножать на последовательность целых чисел. Однако, бывают случаи, когда нужно найти НОК для двузначных или трехзначных чисел, а также, когда исходных чисел три или даже больше.

Способ 2. Найти НОК можно, разложив исходные числа на простые множители. После разложения необходимо вычеркнуть из получившихся рядов простых множителей одинаковые числа. Оставшиеся числа первого числа будут множителем для второго, а оставшиеся числа второго - множителем для первого.

Пример для числе 75 и 60. Наименьшее общее кратное чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5. Как видно, множители 3 и 5 встречаются в обоих строках. Мысленно их "зачеркиваем". Выпишем оставшиеся множители, входящие в разложение каждого из этих чисел. При разложении числа 75 у нас осталось число 5, а при разложении числа 60 - остались 2 * 2 Значит, чтобы определить НОК для чисел 75 и 60, нам нужно оставшиеся числа от разложения 75 (это 5) умножить на 60, а числа, оставшиеся от разложения числа 60 (это 2 * 2 ) умножить на 75. То есть, для простоты понимания, мы говорим, что умножаем "накрест". 75 * 2 * 2 = 300 60 * 5 = 300 Таким образом мы и нашли НОК для чисел 60 и 75. Это - число 300.

Пример. Определить НОК для чисел 12, 16, 24 В данном случае, наши действия будут несколько сложнее. Но, сначала, как всегда, разложим все числа на простые множители 12 = 2 * 2 * 3 16 = 2 * 2 * 2 * 2 24 = 2 * 2 * 2 * 3 Чтобы правильно определить НОК, выбираем наименьшее из всех чисел (это число 12) и последовательно проходим по его множителям, вычеркивая их, если хотя бы в одном из других рядов чисел встретился такой же, еще не зачеркнутый множитель.

 Шаг 1 . Мы видим, что 2 * 2 встречаются во всех рядах чисел. Зачеркиваем их. 12 = 2 * 2 * 3 16 = 2 * 2 * 2 * 2 24 = 2 * 2 * 2 * 3

Шаг 2. В простых множителях числа 12 осталось только число 3. Но оно присутствует в простых множителях числа 24. Вычеркиваем число 3 из обоих рядов, при этом для числа 16 никаких действий не предполагается. 12 = 2 * 2 * 3 16 = 2 * 2 * 2 * 2 24 = 2 * 2 * 2 * 3

Как видим, при разложении числа 12 мы "вычеркнули" все числа. Значит нахождение НОК завершено. Осталось только вычислить его значение. Для числа 12 берем оставшиеся множители у числа 16 (ближайшего по возрастанию) 12 * 2 * 2 = 48 Это и есть НОК

Как видим, в данном случае, нахождение НОК было несколько сложнее, но когда нужно его найти для трех и более чисел, данный способ позволяет сделать это быстрее. Впрочем, оба способа нахождения НОК являются правильными.

 Дроби, задачи на нахождение частей от целого | Описание курса | Привести дробь к наименьшему общему знаменателю 

   

profmeter.com.ua