Корень уравнения - ознакомительная информация. Корень уравнения правило


Способы найти корень уравнения — правила вычисления | Праздник

 

Уравнение – математическое выражение, содержащее одну или несколько неизвестных. Решить уравнение – значит найти такие значения аргументов, при которых достигается равенство левой и правой частей выражения (заданных функций). Найденные значения называются корнями уравнения.

В математике выделяют линейные, квадратные и кубические уравнения. Для того чтобы найти корень уравнения определенного типа используются различные методы.

Линейное уравнение

Выражение вида а*х=b называется линейным уравнением. В нем а – коэффициент при переменной, b – свободный член. При его решении может быть три случая, в которых:

  • а 0. Корень в этом случае вычисляется по формуле: x=b/a. Например, дано уравнение x+3=9-2*x. Выражения с «Х» переносятся в одну сторону, а свободные члены – в другую: х+2*х=9-3, или 3*х=6. Тогда х=6/3, х=2.
  • а=0, b=0. Уравнение примет вид 0*х=0. Это равенство будет верным при любом значении «Х». Значит, корнем уравнения будет любое действительное число.
  • а=0, b 0. Получится выражение 0*х=b, для которого не существует корней.

Квадратное уравнение

Уравнение вида называется квадратным (а 0). «А» и «B» называются коэффициентами, а «С» – свободным членом. Количество корней зависит от значения дискриминанта, который вычисляется по формуле . В том случае, если:

  • D<0 – для уравнения не существует корней.
  • D=0 – есть один корень, который находится по формуле: x=-b/(2*a).
  • D>0 – существует два корня, определяемые следующим образом: Например, дано уравнение 3*х2-2*х-5=0. Дискриминант D=4-4*3*(-5)=64. Будет два корня: .

Кубическое уравнение

Выражение вида называется кубическим уравнением. Оно может обладать несколькими корнями, для вычисления которых нужно:

  • Найти один из корней, который представляет собой делитель свободного члена «d» путем подстановки всех возможных делителей, пока левая часть выражения не станет равной нулю.
  • Разделить исходное уравнение на найденный корень, в результате чего выражение будет приведено к виду квадратного.
  • Найти корни полученного уравнения. Например, дано уравнение . Делители свободного члена 12 – ±2, ±3, ±4, ±6, ±12. Левая часть принимает значение, равное 0 при х=2. Значит 2 – первый корень. Затем нужно разделить исходное выражение на (х-2). Получится квадратное уравнение . Его корнями будут числа .

Другие способы

Помимо алгебраического вычисления необходимых значений можно воспользоваться:

  • Бесплатным онлайн-калькулятором (allcalc.ru).
  • Графическим способом, когда строится график функции, точки пересечения которого с осью «Х» будут корнями уравнения.
Запись опубликована 03.10.2016 автором Wokker в рубрике Без рубрики.

getonholiday.com

Как найти корень уравнения | Подскажем

Уравнение – математическое выражение, содержащее одну или несколько неизвестных. Решить уравнение – значит найти такие значения аргументов, при которых достигается равенство левой и правой частей выражения (заданных функций). Найденные значения называются корнями уравнения.

В математике выделяют линейные, квадратные и кубические уравнения. Для того чтобы найти корень уравнения определенного типа используются различные методы.

Быстрая навигация по статье

Линейное уравнение

Выражение вида а*х=b называется линейным уравнением. В нем а – коэффициент при переменной, b – свободный член. При его решении может быть три случая, в которых:

  • а 0. Корень в этом случае вычисляется по формуле: x=b/a. Например, дано уравнение x+3=9-2*x. Выражения с «Х» переносятся в одну сторону, а свободные члены — в другую: х+2*х=9-3, или 3*х=6. Тогда х=6/3, х=2.
  • а=0, b=0. Уравнение примет вид 0*х=0. Это равенство будет верным при любом значении «Х». Значит, корнем уравнения будет любое действительное число.
  • а=0, b 0. Получится выражение 0*х=b, для которого не существует корней.

Квадратное уравнение

Уравнение вида называется квадратным (а 0). «А» и «B» называются коэффициентами, а «С» – свободным членом. Количество корней зависит от значения дискриминанта, который вычисляется по формуле . В том случае, если:

  • D<0 – для уравнения не существует корней.
  • D=0 – есть один корень, который находится по формуле: x=-b/(2*a).
  • D>0 – существует два корня, определяемые следующим образом: Например, дано уравнение 3*х2-2*х-5=0. Дискриминант D=4-4*3*(-5)=64. Будет два корня: .

Кубическое уравнение

Выражение вида называется кубическим уравнением. Оно может обладать несколькими корнями, для вычисления которых нужно:

  • Найти один из корней, который представляет собой делитель свободного члена «d» путем подстановки всех возможных делителей, пока левая часть выражения не станет равной нулю.
  • Разделить исходное уравнение на найденный корень, в результате чего выражение будет приведено к виду квадратного.
  • Найти корни полученного уравнения. Например, дано уравнение . Делители свободного члена 12 — ±2, ±3, ±4, ±6, ±12. Левая часть принимает значение, равное 0 при х=2. Значит 2 – первый корень. Затем нужно разделить исходное выражение на (х-2). Получится квадратное уравнение . Его корнями будут числа .

Другие способы

Помимо алгебраического вычисления необходимых значений можно воспользоваться:

  • Бесплатным онлайн-калькулятором (allcalc.ru).
  • Графическим способом, когда строится график функции, точки пересечения которого с осью «Х» будут корнями уравнения.
Поделитесь этой статьёй с друзьями в соц. сетях:

podskajem.com

Что такое корень уравнения

Корнем уравнения называют число, подстановка которого в уравнение вместо переменной (обычно \(x\)), дает одинаковые значения выражений справа и слева от знака равно.

Решая, например, уравнение \(2x+1=x+4\) находим ответ: \(x=3\). Если подставить тройку вместо икса, получатся одинаковые значения слева и справа: 

\(2x+1=x+4\) \(2\cdot3+1=3+4\) \(7=7\)

И никакое другое число, кроме тройки такого равенства нам не даст. Значит, число \(3\) – единственный корень уравнения.

Еще раз: корень – это НЕ ИКС! Икс – это переменная, а корень – это число, которое превращает уравнение в верное равенство (в примере выше – тройка). И при решении уравнений мы это неизвестное число (или числа) ищем.

Пример: Является ли \(5\) корнем уравнения \(x^{2}-2x-15=0\)?Решение: Подставим \(5\) вместо икса:

\(5^{2}-2\cdot5-15=0\) \(25-10-15=0\) \(0=0\)

По обе стороны от равно - одинаковые значения (ноль), значит 5 действительно корень.

Матхак: на контрольных таким способом можно проверить верно ли вы нашли корни.

Пример: Какое из чисел \(0, \pm1, \pm2\), является корнем для \(2x^{2}+15x+22=0\)?Решение: Проверим подстановкой каждое из чисел:

проверяем \(0\):     \(2\cdot0^{2}+15\cdot0+22=0\)
    \(0+0+22=0\) 
    \(22=0\) - не сошлось, значит \(0\) не подходит
проверяем \(1\):     \(2\cdot1^{2}+15\cdot1+22=0\)
    \(2+15+22=0\)
    \(39=0\) - опять не сошлось, то есть и \(1\) не корень
проверяем \(-1\):     \(2\cdot(-1)^{2}+15\cdot(-1)+22=0\)
    \(2-15+22=0\)
    \(9=0\) - снова равенство неверное, \(-1\) тоже мимо
 проверяем \(2\):     \(2\cdot2^{2}+15\cdot2+22=0\)
    \(2\cdot4+30+22=0\)
    \(60=0\) - и вновь не то, \(2\) также не подходит
  проверяем \(-2\):     \(2\cdot(-2)^{2}+15\cdot(-2)+22=0\)
      \(2\cdot4-30+22=0\)
    \(0=0\) - сошлось, значит \(-2\) - корень уравнения

Очевидно, что решать уравнения перебором всех возможных значений – безумие, ведь чисел бесконечно много. Потому были разработаны специальные методы нахождения корней. Так, например, для линейных уравнений достаточно одних только равносильных преобразований, для квадратных – уже используются формулы дискриминанта и т.д. Каждому типу уравнений – свой метод.

Ответы на часто задаваемые вопросы

Вопрос: Может ли корень уравнения быть равен нулю?Ответ: Да, конечно. Например, уравнение \(3x=0\) имеет единственный корень - ноль. Можете проверить подстановкой.

Вопрос: Когда в уравнении нет корней?Ответ: В уравнении может не быть корней, если нет таких значений для икса, которые сделают уравнение верным равенством. Яркий примером тут может быть уравнение \(0\cdot x=5\). Это уравнение не имеет корней, так как значение икса здесь не играет роли (из-за умножения на ноль) - все равно левая часть будет всегда равна нулю. А ноль не равен пятерке. Значит, корней нет.

Вопрос: Как составить уравнение так, чтоб корень этого уравенения был равен некоторому заданному числу (например, тройке)?Ответ: появится позже.

Вопрос: Что значит «найдите меньший корень уравнения»?Ответ: Это значит, что нужно решить уравнение, и в ответ указать его меньший корень. Например, уравнение \(x^2-5x-6=0\) имеет два корня: \(x_1=-1\) и \(x_2=6\). Меньший из корней: \(-1\). Вот его и надо будет записать в ответ. Если бы спрашивали про больший корень, то надо было бы записать \(6\).

Скачать статью

cos-cos.ru

Как найти корень уравнения?

Одним из основных разделов математики является раздел, посвященный решению уравнений и нахождению корня уравнений.

Перед тем как найти корень уравнения, нужно сначала разобраться, что это такое.

Корень уравнения - это значение неизвестной величины в уравнении, обозначаемой латинскими буквами (чаще - x, y, но могут быть и другие буквы). Об этом говорилось в нашей статье - Что такое корень уравнения.

Рассмотрим, как найти все корни, на разных видах уравнений и конкретных примерах.

Уравнение вида ax+b=0

Это линейное уравнение с одной переменной, где a и b - числа, x-корень уравнения.

Количество корней уравнения зависит от значений a и b:

  1. Если а=b=0, то уравнение имеет бесконечное количество корней.
  2. Если а=0, b не равно 0, то уравнение не имеет корней.
  3. Если а не равно 0, то корень находим по формуле: х= - (b/а)

Пример:

  • 5х + 2 = 0
  • а=5, b = 2
  • х= - (2/5)
  • х= -0,4

Ответ: корень уравнения равен 0,4

Уравнение вида ax²+bx+c=0.

Это квадратное уравнение. Есть несколько способов нахождения корней в квадратном уравнении. Мы рассмотрим общий, который подходит для решения при любых значениях а, b и с.

Для начала нужно найти значение дискриминанта (D) этого уравнения.

Для этого существует формула:

В зависимости от того, какой поучился дискриминант, есть 3 варианта дальнейшего решения:

  1. Если D >0, то корней 2. И они вычисляются по формулам:
    • x1= (-b + √ D) / 2а.
    • х2= (-b - √ D) / 2a
  2. Если D =0, то корень один - его можно найти по формуле: х= - (b/2а)
  3. Если D<0, то уравнение не имеет корней.

Пример:

Здесь а=1, b=3, с= -4

  • D= 32 - (4*1*(-4))
  • D= 9- (-16)
  • D=9+16
  • D=25

D>0, значит в уравнении будет 2 корня.

Подставляем все значения в нашу формулу:

  • х1 = (-3 +5)/2*1
  • х1=2/2
  • х1=1
  • х2= (-3-5)/ 2*1
  • х2= (-8)/2
  • х2= -4

Ответ: Корни уравнения равны 1 и -4.

Уравнение вида ax3+bx2+cx+d=0

Это кубическое уравнение.

Есть специальные формулы математика Кардано, по которым можно решить такое уравнение, но они очень сложные. Мы пойдем другим, более понятным путем.

Кубические уравнения всегда имеют хотя бы один корень, и его значение обычно целое число от -3 до 3. То есть мы в имеющееся уравнение будем по очереди подставлять вместо х числа: -3, -2, -1, 0, 1, 2 и 3. Это будет Х1.

Это гораздо проще и быстрее, чем кажется, и уж точно проще, чем по формулам Кардано.

После того как мы найдем х1 , переходим к поиску Х2 и Х3.

Для этого поделим наше уравнение на (х-х1) - это можно сделать путем вынесения за скобки. У нас должно остаться квадратное уравнение, которое мы решали в этой статье чуть выше.

Пример:

  • х3 - 3х2 - 13х + 15 = 0

Методом подбора мы выясняем, что Х1=1, 

elhow.ru

Найти корень уравнения? Это просто! :: SYL.ru

В математике встречаются разнообразные уравнения. Их всегда нужно решать, то есть искать все числа, которые сделают его верным равенством. Пути поиска решений определяются первоначальным видом уравнения. От него же будет зависеть и количество верных значений переменной, которые обозначаются, как корень уравнения. Это число может варьироваться от нуля до бесконечности.

Что подразумевается под уравнением и его корнем?

Из названия понятно, что оно приравнивает две величины, которые могут быть представлены числовыми или буквенными выражениями. Кроме того, они содержат еще неизвестные величины. Самое простое уравнение имеет только одну.

Видов уравнений большое количество, но понятие корня для них всегда одно и то же. Корень уравнения — это такое значение неизвестного числа, при котором уравнение принимает становится верным равенством. Бывают ситуации, когда таких чисел несколько, тогда неизвестная называется переменной.

Поиск всех возможных корней уравнения является его решением. То есть нужно выполнить ряд математических действий, которые его упрощают. А потом приводят к равенству, в котором содержится только неизвестная и какое-либо число.

В алгебре при решении уравнений можно прийти к такой ситуации, что корней не будет совсем. Тогда говорят о том, что оно неразрешимо. А в ответе такого уравнения нужно записать, что решений нет.

Но иногда бывает и противоположное. То есть в процессе многочисленных преобразований появляются посторонние корни. Они не дадут верного равенства при подстановке. Поэтому числа всегда нужно проверять, чтобы избежать ситуации с лишними корнями в ответе. Иначе уравнение не будет считаться решенным.

О линейном уравнении

Оно всегда может быть преобразовано в запись следующего вида: а * х + в = 0. В нем «а» всегда не равно нулю. Чтобы понять сколько корней имеет уравнение, его потребуется решить в общем виде.

Алгоритм преобразований:

  • перенести в правую часть равенства слагаемое «в», заменив его знак на противоположный;
  • разделить обе части получившегося равенства на коэффициент «а».

Общий вид решения такой:

х = -в/а.

Из него ясно, что ответом будет одно число. То есть всего один корень.

Квадратное уравнение

Его общий вид: а * х2 + в * х + с = 0. Здесь коэффициенты являются любыми числами, кроме первого, «а», которое не может быть равным нулю. Ведь тогда оно автоматически превратится в линейное. Ответ на вопрос, сколько корней имеет уравнение, уже не будет столь однозначным, как это было в предыдущем случае.

Все будет зависеть от значения дискриминанта. Он вычисляется по формуле Д = в2 - 4 а * с. После расчетов «Д» может получиться больше, меньше или равным нулю. В первом случае корней уравнения будет два, во втором ответом будет «корней нет», а третья ситуация даст только одно значение неизвестной.

Формулы, которые используют для нахождения корней квадратного уравнения, и содержащие дискриминант

В общем случае, когда «Д» положительное число, не равное нулю, нужно использовать такую формулу:

х1,2 = (-в ± √Д) / (2 * а).

Здесь всегда получится два ответа. Это связано с тем, что в исходной формуле стоит знак «плюс/минус». Он существенно изменяет значение неизвестной.

При равенстве «Д» нулю корень уравнения — это единственное число. Просто потому что квадратный корень из нуля равен нулю. А значит, прибавлять и вычитать нужно будет ноль. От этого число не изменится. Поэтому формулу корня уравнения можно записать без упоминания "Д":

х = (-в) / (2 * а).

При отрицательном значении дискриминанта извлечь из него квадратный корень не представляется возможным. Поэтому корней у такого уравнения не будет.

Замечание. Это верно для курса школьной программы, в которой не изучаются комплексные числа. Когда они вводятся, то получается, что и в этой ситуации ответов будет два.

Формулы для расчета корней квадратного уравнения, не использующие дискриминант

Речь идет о теореме Виета. Она действительна в случае, когда квадратное уравнение записывается в несколько другом виде:

х2 + в * х + с = 0.

Тогда формула корней квадратного уравнения сводится к тому, чтобы выполнить решение двух линейных:

х1 + х2 = -вих1 * х2 = с.

Оно решается за счет того, что из первого выводится выражение для одного из корней. И это значение нужно подставить во второе. Так будет найден второй корень, а потом первый.

К этому варианту всегда можно прийти от общего вида квадратного уравнения.

Достаточно только разделить все коэффициенты на «а».

Как быть, если нужно узнать наименьшее значение корня?

Решать уравнение и находить все возможные числа, которые подойдут для ответа. А потом выбрать самое малое. Это и будет наименьший корень уравнения.

Чаще всего такие вопросы встречаются в заданиях, которые имеют степень большую, чем 2, или содержат тригонометрические функции. Примером, когда нужно найти наименьший корень, может служить такое равенство:

2 х5 + 2 х4 - 3 х3 - 3 х2 + х + 1 = 0.

Чтобы найти каждое значение, которое можно назвать "корень уравнения", это равенство нужно преобразовать. Первое действие: сгруппировать его члены попарно: первый со вторым и так далее. Потом из каждой пары вынести общий множитель.

В каждой скобке останется (х + 1). Общим множителем в первой из пар будет 2 х4, во второй 3 х2. Теперь снова нужно выполнить вынесение общего множителя, которым будет являться одинаковая скобка.

После множителя (х + 1) будет стоять (2 х4 - 3 х2 + 1). Произведение двух множителей равняется нулю, только если один из них принимает значение, равное нулю.

Первая скобка равна нулю при х = -1. Это будет одним из корней уравнения.

Другие будут получены из уравнения, образованного второй скобкой, приравненной к нулю. Оно биквадратное. Для его решения нужно ввести обозначение: х2 = у. Тогда уравнение существенно преобразится и примет привычный вид квадратного уравнения.

Его дискриминант равен Д = 1. Он больше нуля, значит корней будет два. Первый корень оказывается равным 1, второй будет 0,5. Но это значения для «у».

Нужно вернуться к введенному обозначению. х1,2 = ± 1, х3,4 = ± √0,5. Все корни уравнения: -1; 1; -√0,5; √0,5. Наименьший из них — -1. Это ответ.

В качестве заключения

Напоминание: все уравнения нужно проверять на то, подходит ли корень. Может быть, он посторонний? Стоит выполнить проверку предложенного примера.

Если подставить в изначально данное уравнение вместо "х" единицу, то получается, что 0 = 0. Этот корень верный.

Если х = -1, то получается такой же результат. Корень тоже подходящий.

Аналогично, при значениях "х" равных -√0,5 и √0,5 опять выходит верное равенство. Все корни подходят.

Этот пример не дал посторонних корней. Такое бывает не всегда. Вполне могло оказаться, что самое маленькое значение не подходило бы при проверке. Тогда пришлось бы выбирать из оставшихся.

Вывод: надо помнить о проверке и внимательно подходить к решению.

www.syl.ru

КОРЕНЬ УРАВНЕНИЯ - это... Что такое КОРЕНЬ УРАВНЕНИЯ?

 КОРЕНЬ УРАВНЕНИЯ КОРЕНЬ УРАВНЕНИЯ

(root of an equation) Значение аргумента уравнения (equation), которое удовлетворяет данному уравнению. Например, если 2х–4=0, то х=2 является корнем (в данном случае единственным) уравнения. Уравнение у2-7у+10=0 имеет два действительных корня: у=2 и у=5. Данное уравнение может либо иметь, либо не иметь один или несколько действительных корней. В некоторых случаях по виду уравнения можно судить о количестве действительных корней и довольно легко их определить. Линейное уравнение ах=b=0, где а≠0, всегда имеет один действительный корень х=-b/а. Уравнение ay2+by=0, где а≠0, может иметь два действительных корня (возможно, равных) или ни одного. Корни выводятся из следующего уравнения: Если b2&GT;4ас, уравнение может иметь два действительных корня; при b2=4ас они равны, а при b2&LT;4ас – уравнение не имеет действительных корней. Для большинства уравнений не существует сравнительно легких правил определения наличия и вычисления корней; это делается с помощью численных методов.

Экономика. Толковый словарь. — М.: "ИНФРА-М", Издательство "Весь Мир". Дж. Блэк. Общая редакция: д.э.н. Осадчая И.М.. 2000.

Экономический словарь. 2000.

  • КООРДИНАЦИЯ ПОЛИТИКИ
  • КОРЕНЬ ЧИСЛА

Смотреть что такое "КОРЕНЬ УРАВНЕНИЯ" в других словарях:

  • Корень уравнения — КОРЕНЬ, рня, мн. рни, рней, м. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • корень уравнения — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN equation root …   Справочник технического переводчика

  • Корень уравнения — Корень многочлена над полем k  элемент , который после подстановки его вместо x обращает уравнение в тождество. Свойства Если c является корнем многочлена p(x …   Википедия

  • КОРЕНЬ — КОРЕНЬ, корня, мн. корни, корней, м. 1. Вросшая в землю часть растения, через к рую оно всасывает соки из почвы. Бурей выворотило деревья с корнями. Дуб глубоко пустил корни в землю. || Древесина или вещество этой части растения. Лакричный корень …   Толковый словарь Ушакова

  • КОРЕНЬ — КОРЕНЬ, рн , мн. рни, рней, муж. 1. Подземная часть растения, служащая для укрепления его в почве и всасывания из неё воды и питательных веществ. Главный, боковой, придаточный к. Воздушные корни (у лиан и нек рых других растенийвысоко над землёй …   Толковый словарь Ожегова

  • КОРЕНЬ — в математике ..1) корень степени n из числа a всякое число x (обозначаемое , a называется подкоренным выражением), n я степень которого равна a (). Действие нахождения корня называется извлечением корня2)] Корень уравнения число, которое после… …   Большой Энциклопедический словарь

  • КОРЕНЬ (в математике) — КОРЕНЬ, в математике 1) корень степени n из числа a всякое число x (обозначаемое , a называется подкоренным выражением), n я степень которого равна a (). Действие нахождения корня называется извлечением корня. 2) Корень уравнения число, которое… …   Энциклопедический словарь

  • Корень (значения) — Корень: В Викисловаре есть статья «корень» Корень (в ботанике)  вегетативный осевой подземный орган растения, обладающий сп …   Википедия

  • Уравнения математической физики —         дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро дифференциальные и т.д.), к которым приводит математический анализ физических явлений. Для теории У. м. ф.… …   Большая советская энциклопедия

  • корень — рня; мн. корни, ей; м. 1. Подземная часть растения, посредством которой оно укрепляется в почве и получает из земли воду с растворёнными в ней минеральными веществами. Корни деревьев. Длинный к. К. жизни (о женьшене). Сгноить урожай на корню (в… …   Энциклопедический словарь

dic.academic.ru

Корень уравнения - ознакомительная информация

В алгебре существует понятие двух видов равенств – тождества и уравнения. Тождества – это такие равенства, которые выполнимы при любых значениях букв, в них входящих. Уравнения – это тоже равенства, но выполнимы они лишь при некоторых значениях входящих в них букв. Буквы по условию задачи обычно бывают неравноправными. Это значит, что одни из них могут принимать любые допустимые значения, называемые коэффициентами (или параметрами), другие же - их называют неизвестными - принимают значения, которые необходимо найти в процессе решения. Как правило, неизвестные величины обозначают в уравнениях буквами, последними в латинском алфавите (x.y.z и т.д.), либо такими же буквами, но с индексом (х1,х2, и т.д.), а известные коэффициенты – первыми буквами того же алфавита.

По количеству неизвестных выделяют уравнения с одним, двумя и несколькими неизвестными. Таким образом, все значения неизвестных, при которых решаемое уравнение превращается в тождество, называются решениями уравнений. Уравнение можно считать решенным в том случае, если найдены все его решения или доказано, что оно таковых не имеет. Задание «решить уравнение» на практике встречается часто и означает, что нужно отыскать корень уравнения.

Определение: корнями уравнения называются те значения неизвестных из области допустимых, при которых решаемое уравнение превращается в тождество.

Алгоритм решения абсолютно всех уравнений одинаков, и смысл его заключается в том, чтобы с помощью математических преобразований данное выражение привести к более простому виду. Уравнения, которые имеют одинаковые корни, в алгебре называются равносильными.

Простейший пример: 7х-49=0, корень уравнения х=7;х-7=0, аналогично, корень х=7, следовательно, уравнения равносильные. (В частных случаях равносильные уравнения могут совсем не иметь корней).

Если корень уравнения одновременно является корнем другого, более простого уравнения, полученного из исходного путем преобразований, то последнее называется следствием предыдущего уравнения.

Если их двух уравнений одно является следствием другого, то они считаются равносильными. Еще их называют эквивалентными. Приведенный выше пример это иллюстрирует.

Решение даже самых простых уравнений на практике нередко вызывает сложности. В результате решения можно получить один корень уравнения, два и более, даже бесконечное количество - зависит это от вида уравнений. Есть и такие, у которых нет корней, они называются неразрешимыми.

Примеры: 1) 15х -20=10; х=2. Это единственный корень уравнения.2) 7х – y=0. Уравнение имеет бесконечное множество корней, так как у каждой переменной может быть бесчисленное количество значений.3) х2= - 16. Число, возведенное во вторую степень, всегда дает положительный результат, поэтому невозможно отыскать корень уравнения. Это и есть одно из неразрешимых уравнений, о которых говорилось выше.

Правильность решения проверяется подстановкой найденных корней вместо букв и решением получившегося примера. Если тождество соблюдается, решение верное.

fb.ru