Точка пересечения двух прямых – определение (методическая разработка). Координаты точки пересечения прямой и прямой


2.7. Определение координат точки пересечения прямой и плоскости в пространстве

Если прямая задана параметрически r = r0 + l и уравнение плоскости имеет вид: (r – r1 , l )=0 , то эта задача решалась в предыдущем параграфе.

Если прямая задана в виде: , то ее пересечение с плоскостьюсводится к решению системы трех уравнений с тремя неизвестными (см. рис. 2.17)

Рис. 2.17. Точка пересечения трех плоскостей

2.8. Определение координат проекции точки на прямую на плоскости, проекции точки на плоскость в пространстве

Проекция точки на прямую(r – r0 , N )=0 на плоскости.

Если прямая задана общим уравнением , N = ,то составляется уравнение прямой r = r1 + N, проходящей через точку и направляющим векторомl = N . После чего находится точка пересечения этой прямой с исходной прямой: (r1 + N – r0 , N )=0 (N , N )= (r0 – r1 , N ) . Радиус вектор этой точки будет равен: r = r1 + N (r0 – r1 , N ) / (N , N ) (см. рис. 2.18) .

Рис. 2.18. Проекция точки на прямую

Аналогично решается задача нахождения проекции точки на плоскость

(r – r0 , N )=0 в пространстве. В векторном виде решение выглядит точно так же, как и в плоском случае.

Уравнение проектирующей прямой: r = r1 + N , радиус вектор-проекции будет равен: (см. рис. 2.19)

Рис. 2.19. Проекция точки на плоскость

2.9. Базовые задачи

Напоминание.

Прямую, проходящую через точку с направляющим вектороммы договорились обозначать.

2.9.1. Составить уравнение плоскости, проходящей через три точки

Три точки . Точки искомой плоскостиудовлетворяют условию: вектора,,должны быть компланарны, то есть, должно быть равно нулю смешанное произведение (см. рис. 2.20)

(,,)=0,

.

Рис. 2.20. Уравнение плоскости по трем точкам

2.9.2. Составить уравнение плоскости, проходящей через точку и прямую

Дана точка и прямаяr = r0 + l .

Точки искомой плоскости удовлетворяют условию: вектора,l, должны быть компланарны. Искомое уравнении плоскости:

(,l, ) = 0.

2.9.3. Составить уравнение плоскости, проходящей через заданную точку, параллельно заданной плоскости

Дана точка и плоскость.

У искомой плоскости общий перпендикуляр с заданной плоскостью, поэтому уравнение искомой плоскости будет: .

2.9.4.Составить уравнение плоскости, проходящей через заданную прямую, параллельно заданному вектору

Дана прямая с точкой и направляющим вектором. Искомая плоскость будет иметь нормаль (см. рис. 2.21).

Рис. 2.21. Уравнение плоскости через точку

2.10. Разные задачи

2.10.1. Определить расстояние между двумя скрещивающимися прямыми

Первый способ. Заданы прямые:

r = r1 + l1 , r = r2 + l2 .

Рис. 2.22. Расстояние между прямыми

1) Вектор, перпендикулярный обеим прямым N = [l1 , l2] .

2) По N и точке составляем уравнение плоскости, проходящей через вторую прямую, параллельно первой прямой: плоскость, проходящую через точкус нормальюN.

3) Находим расстояние от точки до плоскости(см. рис. 2.22).

Второй способ.

Находим высоту параллелепипеда, построенного на векторах l1 , l2 , , в основании которого лежит параллелограмм, построенный наl1 , l2 (см. рис. 2.23).

Ответ: .

Рис. 2.23. Высота паллелепипеда

2.10.2. Определить расстояние между двумя параллельными прямыми

Рис. 2.24. Расстояние между параллельными прямыми

Задача решается одинаково, как для плоского, так и для пространственного случаев (см. рис. 2.24). Искомое расстояние равно высоте параллелелограмма, построенного на векторах l1 , с основаниемl1 . .

2.10.3. Составить уравнение прямой, проходящую через точку , заданную прямую, определяемую точкой, направляющим вектороми параллельно плоскости

Рис. 2.25. Уравнение прямой

Уравнение прямой будем искать в виде пересечения двух плоскостей (см. рис. 2.25).

1) Первая плоскость определяется точкойи нормалью.

2) Вторая плоскость проводится через точкуи прямую. Таким образом, эта плоскость проходит через и имеет нормаль.

2.10.4. Составить уравнение общего перпендикуляра двух скрещивающихся прямых

Общий перпендикуляр будем искать в виде пересечения двух плоскостей ,.

Рис. 2.26. Общий перпендикуляр

Последовательность действий (см. рис. 2.26):

1) общий перпендикуляр к прямым будет

2) нормаль к плоскости , проходящей через прямуюперпендикулярно:

  1. сама плоскость определяется точкойи указанной нормалью

.

  1. нормаль к плоскости проходящей через прямуюперпендикулярно:

  1. сама плоскость определяется точкойи указанной нормалью

.

2.10.5. Составить уравнение плоскости, проходящей через прямую с точкой, направляющим вектором, перпендикулярно плоскости, проходящей через точкус нормалью.

Точка для решения задачи не понадобится и на рисунке она не показана.

Рис. 2.27. Уравнение плоскости

  1. Находим перпендикуляр к искомой плоскости (см. рис. 2.27):

.

2) Искомая плоскость будет определяться точкойи нормалью.

2.10.6. Проекция точки на прямую в пространстве

Задана прямая и точка .

1) Строим проектирующую плоскость , проходящую через точкус нормалью.

2) Находим точку пересечения плоскости и прямой.

2.10.7. Симметричная точка относительно плоскости

Дана плоскость , определяемая точкойи нормальюи точка.

Рис. 2.28. Симметричная точка

1) Строится прямая , проходящая через точку, перпендикулярно плоскоси(см. рис. 2.28).

2) Находится точка пересечения этой прямой с плоскостью.

3) Искомая точка находится из треугольника:.

2.10.8. Симметричная точка относительно прямой в пространстве

Задана прямая и точка .

1) Находим проекцию точкина прямую, как это описывалось в пункте 2.10.6.

2) Искомая точка находится из треугольника:(см. рис. 2.29).

Рис. 2.29. Симметричная точка относительно прямой

2.10.9. Уравнение плоскости, проходящей через прямую, параллельно другой прямой

Заданы прямые , .

Плоскость , проходящая через первую прямую, параллельно второй прямай определяется, как плоскость, проходящая черезс нормалью.

2.10.10. Уравнение прямой, параллельной плоскостям и пересекающей две прямые

Прямая задана пересечением плоскостей . Две прямые имеют направляющие векторы l1 , l2 (см. рис. 2.30).

Рис. 2.30. Уравнение прямой

1) Находим направляющий вектор прямой:.

2) Строим плоскость , проходящую через прямуюl1 , параллельно вектору l (базовая задача 2.9.4).

3) Строим плоскость , проходящую через прямуюl2 , параллельно вектору l (базовая задача 2.9.4).

Ответ: .

studfiles.net

Точка пересечения прямой и плоскости — Мегаобучалка

 

Дана прямая: (1) и плоскость: Ax + By + Cz + D = 0 (2).

Найдем координаты точки пересечения прямой и плоскости. Если прямая (1) и плоскость (2) пересекаются, то координаты точки пересечения удовлетворяют уравнениям (1) и (2):

отсюда

, .

Подставляя найденное значение t в (1), получим координаты точки пересечения.

1) Если Am + Bn + Cp = 0, а Ax0 + By0 + Cz0 + D ≠ 0, то и t не существует, т.е. прямая и плоскость не имеют ни одной общей точки. Они параллельны.

2) Am + Bn + Cp = 0 и Ax0 + By0 + Cz0 + D = 0. В этом случае t может принимать любые значения и , т.е. прямая параллельна плоскости и имеет с ней общую точку, т.е. она лежит в плоскости.

Пример 1. Найти точку пересечения прямой с плоскостью 3x – 3y + 2z – 5 = 0.

, 3(2t – 1) – 3(4t + 3) + 2·3t – 5 = 0 => -17=0, что невозможно ни при одном t, т.е. прямая и плоскость не пересекаются.

Пример 2. Найти точку пересечения прямой и плоскости: x + 2y – 4z + 1 = 0.

, 8t + 13 + 2(2t + 1) – 4(3t + 4) + 1 = 0, 0 + 0 = 0. Это верно при любом значении t, т.е. прямая лежит в плоскости.

Пример 3. Найти точку пересечения прямой и плоскости 3x – y + 2z – 5 = 0.

, 3(5t + 7) – t – 4 + 2(4t + 5) – 5 = 0, 22t + 22 = 0, t = -1, x = 5(-1) + 7 = 2, y = -1 + 4 = 3, z = 4(-1) + 5 = 1, M(2, 3, 1) – точка пересечения прямой и плоскости.

 

Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.

 

Углом между прямой и плоскостью называется острый угол ц между прямой и ее проекцией на плоскость.

Пусть заданы прямая и плоскость:

и .

Пусть прямая пересекает плоскость и образует с ней угол ц ( ). Тогда б = 900 – ц или б = 900 + ц – это угол между нормальным вектором плоскости и направляющим вектором прямой . Но . Значит

(3).

а) Если L P, то - условие перпендикулярности прямой и плоскости.

б) Если L||P, то - условие параллельности прямой и плоскости.

в) Если прямая L||P и при этом точка M0(x0, y0, z0) P, то прямая лежит в данной плоскости. Аналитически:

- условия принадлежности прямой и плоскости.

Пример. Дана прямая и точка М0(1, 0, –2). Через точку М0 провести плоскость, перпендикулярную данной прямой. Уравнение искомой плоскости ищем в виде: A(x – 1) + B(y – 0) + C(z + 2) = 0. В данном случая , ,

-5(x – 1) – 5y + 5(z + 2) = 0, - x – y + z + 3 = 0.

 

Пучок плоскостей.

 

Пучок плоскостей – множество всех плоскостей, проходящих через заданную прямую – ось пучка.

Чтобы задать пучок плоскостей, достаточно задать его ось. Пусть уравнение этой прямой задано в общем виде:

.

Составить уравнение пучка – значит составить уравнение, из которого можно получить при дополнительном условии уравнение любой плоскости пучка, кроме, б.м. одной. Умножим II уравнение на л и сложим с I уравнением:

A1x + B1y + C1z + D1 + л(A2x + B2y + C2z + D2) = 0 (1) или

(A1+ лA2)x + (B1+ лB2)y + (C1 + лC2)z + (D1 + лD2) = 0 (2).

л – параметр – число, которое может принимать действительные значения. При любом выбранном значении л уравнения (1) и (2) линейные, т.е. это – уравнения некоторой плоскости.

1. Покажем, что эта плоскость проходит через ось пучка L. Возьмем произвольную точку M0(x0, y0, z0) L. Следовательно, М0 Р1 и М0 Р2. Значит:

.

Следовательно, плоскость, описываемая уравнением (1) или (2) принадлежит пучку.

2. Можно доказать и обратное: всякая плоскость, проходящая через прямую L, описывается уравнением (1) при соответствующем выборе параметра л.

Пример 1. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + y + 5z – 1 = 0 и 2x + 3y – z + 2 = 0 и через точку М(3, 2, 1).

Записываем уравнение пучка: x + y + 5z – 1 + л(2x + 3y – z + 2) = 0. Для нахождения л учтем, что М Р:

3 + 2 + 5 – 1 + л(6 + 6 – 1 + 2) = 0 => л = , т.е.

x + y + 5z – 1 (2x + 3y – z + 2) = 0, 5x + 14y – 74z + 31 = 0.

Пример 2 (Э). Составить уравнение плоскости, которая проходит через прямую и точку М0 (4, -2, -3).

Запишем ; 17 + л = 0; л = -17

3x – y + 2z + 9 + 17x + 17z – 51 = 0; 20x – y + 19z – 42 = 0.

Пример 3 (Э). Составить уравнение плоскости, проходящей через прямую перпендикулярно плоскости x – 2y + z + 5 = 0. ; 3x – 2y + z – 3 + л(x – 2z) = 0; (3 + л)x – 2y + (1 – 2 л)z – 3 = 0; ; ; л = 8; 11x – 2y – 15z – 3 = 0.

 

megaobuchalka.ru

Координаты точки пересечения прямой и плоскости - примеры нахождения. - Стереометрия

В этой статье мы ответим на вопрос: «Как найти координаты точки пересечения прямой и плоскости, если заданы уравнения, определяющие прямую и плоскость»? Начнем с понятия точки пересечения прямой и плоскости. Далее покажем два способа нахождения координат точки пересечения прямой и плоскости. Для закрепления материала рассмотрим подробные решения примеров.

Навигация по странице.

  • Точка пересечения прямой и плоскости – определение.
  • Нахождение координат точки пересечения прямой и плоскости.

Точка пересечения прямой и плоскости – определение.

В заголовке статьи фигурируют слова «точка», «прямая» и «плоскость». Поэтому, для понимания темы необходимо иметь четкое представление о точке, прямой линии и плоскости в пространстве. Освежить в памяти эти понятия Вы можете, обратившись к статьям прямая в пространстве и плоскость в пространстве.

Возможны три варианта взаимного расположения прямой и плоскости в пространстве:

  • прямая лежит в плоскости;
  • прямая параллельна плоскости;
  • прямая пересекает плоскость.

Нас интересует третий случай. Напомним, что означает фраза: «прямая и плоскость пересекаются». Говорят, что прямая и плоскость пересекаются, если они имеют только одну общую точку. Это общую точку пересекающихся прямой и плоскости называют точкой пересечения прямой и плоскости.

Приведем графическую иллюстрацию.

К началу страницы

Нахождение координат точки пересечения прямой и плоскости.

Введем в трехмерном пространстве прямоугольную систему координат Oxyz. Теперь каждой прямой соответствуют уравнения прямой некоторого вида (им посвящена статья виды уравнений прямой в пространстве), каждой плоскости отвечает уравнение плоскости (можете ознакомиться со статьей виды уравнения плоскости), а каждой точке соответствует упорядоченная тройка чисел – координаты точки. Дальнейшее изложение подразумевает знание всех видов уравнений прямой в пространстве и всех видов уравнения плоскости, а также умение переходить от одного вида уравнений к другому виду. Но не пугайтесь, по тексту мы будем приводить ссылки на необходимую теорию.

Давайте сначала детально разберем задачу, решение которой мы можем получить на основании определения точки пересечения прямой и плоскости. Эта задача нас подготовит к нахождению координат точки пересечения прямой и плоскости.

Является ли точка М0 с координатами  точкой пересечения прямой  и плоскости .

Нам известно, что если точка принадлежит некоторой прямой, то координаты точки удовлетворяют уравнениям прямой. Аналогично, если точка лежит в некоторой плоскости, то координаты точки удовлетворяют уравнению этой плоскости. По определению точка пересечения прямой и плоскости является общей точкой прямой и плоскости, тогда координаты точки пересечения удовлетворяют как уравнениям прямой, так и уравнению плоскости.

Таким образом, для решения поставленной задачи нам следует подставить координаты точки М0 в заданные уравнения прямой и в уравнение плоскости. Если при этом все уравнения обратятся в верные равенства, то точка М0 является точкой пересечения заданных прямой и плоскости, в противном случае точка М0 не является точкой пересечения прямой и плоскости.

Подставляем координаты точки :

Все уравнения обратились в верные равенства, следовательно, точка М0 принадлежит одновременно и прямой  и плоскости , то есть, М0является точкой пересечения указанных прямой и плоскости.

да, точка  - это точка пересечения прямой  и плоскости .

Итак, координаты точки пересечения прямой и плоскости удовлетворяют как уравнениям прямой, так и уравнению плоскости. Этим фактом и будем пользоваться при нахождении координат точки пересечения прямой и плоскости.

Первый способ нахождения координат точки пересечения прямой и плоскости.

Пусть в прямоугольной системе координат Oxyz заданы прямая a и плоскость , причем известно, что прямая a и плоскость  пересекаются в точке М0.

Найдем координаты точки М0 для случая, когда плоскость  задана общим уравнением плоскости вида , а прямая а является линией пересечения двух плоскостей  и  (такому способу задания прямой линии в пространстве посвящена статья уравнения прямой - уравнения двух пересекающихся плоскостей).

Искомые координаты точки пересечения прямой a и плоскости , как мы уже говорили, удовлетворяют и уравнениям прямой a, и уравнению плоскости , следовательно, они могут быть найдены как решение системы линейных уравнений вида . Это действительно так, так как решение системы линейных уравнений обращает каждое уравнение системы в тождество.

Отметим, что при такой постановке задачи мы фактически находим координаты точки пересечения трех плоскостей, заданных уравнениями ,  и .

Решим пример для закрепления материала.

Следует отметить, что система уравнений  имеет единственное решение, если прямая a, определенная уравнениями , и плоскость , заданная уравнением , пересекаются. Если прямая a лежит в плоскости , то система имеет бесконечное множество решений. Если же прямая aпараллельна плоскости , то система уравнений решений не имеет.

Найдите точку пересечения прямой  и плоскости , если это возможно.

Оговорка «если это возможно» означает, что прямая и плоскость могут не пересекаться.

Составим систему из заданных уравнений . Если эта система уравнений имеет единственное решение, то оно даст нам искомые координаты точки пересечения прямой и плоскости. Если эта система не имеет решений или имеет бесконечно много решений, то о нахождении координат точки пересечения не может быть и речи, так как прямая либо параллельна плоскости, либо лежит в этой плоскости.

Основная матрица системы имеет вид , а расширенная матрица - . Определим ранг матрицы А и ранг матрицы Т методом окаймляющих миноров: . То есть, ранг основной матрицы равен рангу расширенной матрицы системы и равен двум. Следовательно, на основании теоремы Кронекера-Капелли можно утверждать, что система уравнений имеет бесконечное множество решений.

Таким образом, прямая  лежит в плоскости , и мы не можем говорить о нахождении координат точки пересечения прямой и плоскости.

невозможно найти координаты точки пересечения прямой и плоскости.

Заметим, что если прямой a соответствуют параметрические уравнения прямой в пространствеили канонические уравнения прямой в пространстве, то можно получить уравнения двух пересекающихся плоскостей, определяющих прямую a, и после этого находить координаты точки пересечения прямой a и плоскости  разобранным способом. Однако проще использовать другой метод, к описанию которого мы и переходим.

Второй способ нахождения координат точки пересечения прямой и плоскости.

Пусть в прямоугольной системе координат Oxyz прямая a пересекает плоскость  в точке М0. Найдем координаты точки М0 для случая, когда плоскость  задана общим уравнением плоскости вида , а прямая а определена параметрическими уравнениями вида .

Если в уравнение  подставить выражения , мы придем к уравнению с неизвестной . Разрешив это уравнение относительно , мы получим значение , соответствующее координатам точки пересечения прямой a и плоскости . Координаты точки пересечения прямой и плоскости вычисляются как .

Разберем этот способ нахождения координат точки пересечения прямой и плоскости на примере.

Обратите внимание: если прямая  лежит в плоскости , то, подставив в уравнение  выражения , мы получим тождество , а если указанная прямая параллельна плоскости - то мы получим неверное равенство.

В заключении скажем про случай, когда прямая a задана каноническими уравнениями вида . В этом случае для нахождения координат точки пересечения прямойa с плоскостью , от канонических уравнений прямой следует перейти к параметрическим уравнениям этой прямой () и воспользоваться разобранным способом.

intellect.ml

Координаты точки пересечения прямой и плоскости

Данная глава рассказывает о том, как найти координаты точки пересечения прямой с плоскостью при заданных уравнениях, определяющих эту плоскость. Будет рассмотрено понятие точки пересечения прямой с плоскостью, два способа нахождения координат точки пересечения прямой с плоскостью.

Точка пересечения прямой  и плоскости – определение

Для углубленного изучения теории необходимо начать рассмотрение с  понятия точки, прямой, плоскости. Понятие о точке, прямой линии рассматривается как  на плоскости, так и в пространстве. Для детального рассмотрения необходимо обратиться к теме о прямой  и плоскости в пространстве.

Существует несколько вариаций расположения прямой относительно плоскости и пространства:

  • прямая лежит в плоскости;
  • прямая параллельна плоскости;
  • прямая пересекает плоскость.

Если рассмотреть третий случай, то отчетливо видно, что прямая с плоскостью при пересечении образуют общую точку, которую  называют точкой пересечения прямой  и плоскости. рассмотрим данный случай на примере.

Нахождение координат точки пересечения прямой и плоскости

Была введена прямоугольная система координат Охуz трехмерного пространства.  Каждая прямая имеет свое собственное уравнение, а каждая плоскость соответствует своему заданному уравнению, каждая точка имеет определенное количество действительных чисел – координат.

Чтобы подробно разобраться в теме координат пересечения, необходимо знать все виды уравнения прямой в пространстве и уравнений плоскости. в данном случае пригодятся знания о переходе от одного вида уравнения к другому.

Рассмотрим задачу, которая основывается на заданном пересечении прямой и плоскости. она сводится к нахождению координат пересечений.

Пример 1

Вычислить, может ли точка М0  с координатами -2, 3, -5 являться точкой пересечения прямой x+3-1=y-3=z+23 с плоскостью

www.zaochnik.com

Координаты точки пересечения двух прямых - примеры нахождения. - Стереометрия

При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

  • Точка пересечения двух прямых – определение.
  • Нахождение координат точки пересечения двух прямых на плоскости.
  • Нахождение координат точки пересечения двух прямых в пространстве.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

В разделе взаимное расположение прямых на плоскости показано, что две прямые на плоскости могут либо совпадать (при этом они имеют бесконечно много общих точек), либо быть параллельными (при этом две прямые не имеют общих точек), либо пересекаться, имея одну общую точку. Вариантов взаимного расположения двух прямых в пространстве больше – они могут совпадать (иметь бесконечно много общих точек), могут быть параллельными (то есть, лежать в одной плоскости и не пересекаться), могут быть скрещивающимися (не лежащими в одной плоскости), а также могут иметь одну общую точку, то есть, пересекаться. Итак, две прямые и на плоскости и в пространстве называются пересекающимися, если они имеют одну общую точку.

Из определения пересекающихся прямых следует определение точки пересечения прямых: точка, в которой пересекаются две прямые, называется точкой пересечения этих прямых. Другими словами, единственная общая точка двух пересекающихся прямых есть точка пересечения этих прямых.

Приведем для наглядности графическую иллюстрацию точки пересечения двух прямых на плоскости и в пространстве.

К началу страницы

Нахождение координат точки пересечения двух прямых на плоскости.

Прежде чем находить координаты точки пересечения двух прямых на плоскости по их известным уравнениям, рассмотрим вспомогательную задачу.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b. Будем считать, что прямой a соответствует общее уравнение прямой вида , а прямой b – вида . Пусть  – некоторая точка плоскости, и требуется выяснить, является ли точка М0 точкой пересечения заданных прямых.

Решим поставленную задачу.

Если M0 является точкой пересечения прямых a и b, то по определению она принадлежит и прямой a и прямой b, то есть, ее координаты должны удовлетворять одновременно и уравнению  и уравнению . Следовательно, нам нужно подставить координаты точки М0 в уравнения заданных прямых и посмотреть, получаются ли при этом два верных равенства. Если координаты точки М0 удовлетворяют обоим уравнениям  и , то  – точка пересечения прямых a и b, в противном случае М0 не является точкой пересечения прямых.

Является ли точка М0 с координатами (2, -3) точкой пересечения прямых 5x-2y-16=0 и2x-5y-19=0?

Если М0 действительно точка пересечения заданных прямых, то ее координаты удовлетворяют уравнениям прямых. Проверим это, подставив координаты точки М0 в заданные уравнения:

Получили два верных равенства, следовательно, М0 (2, -3) - точка пересечения прямых5x-2y-16=0 и 2x-5y-19=0.

Для наглядности приведем чертеж, на котором изображены прямые и видны координаты точки их пересечения.

да, точка М0 (2, -3) является точкой пересечения прямых 5x-2y-16=0 и 2x-5y-19=0.

Пересекаются ли прямые 5x+3y-1=0 и 7x-2y+11=0 в точке M0 (2, -3)?

Подставим координаты точки М0 в уравнения прямых, этим действием будем осуществлена проверка принадлежности точки М0 обеим прямым одновременно:

Так как второе уравнение при подстановке в него координат точки М0 не обратилось в верное равенство, то точка М0 не принадлежит прямой 7x-2y+11=0. Из этого факта можно сделать вывод о том, что точка М0 не является точкой пересечения заданных прямых.

На чертеже также хорошо видно, что точка М0 не является точкой пересечения прямых5x+3y-1=0 и 7x-2y+11=0. Очевидно, заданные прямые пересекаются в точке с координатами (-1, 2).

М0 (2, -3) не является точкой пересечения прямых 5x+3y-1=0 и 7x-2y+11=0.

Теперь можно переходить к задаче нахождения координат точки пересечения двух прямых по заданным уравнениям прямых на плоскости.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b уравнениями  и соответственно. Обозначим точку пересечения заданных прямых как М0 и решим следующую задачу: найти координаты точки пересечения двух прямых a и b по известным уравнениям этих прямых  и .

Точка M0 принадлежит каждой из пересекающихся прямых a и b по определению. Тогда координаты точки пересечения прямых a и b удовлетворяют одновременно и уравнению  и уравнению . Следовательно, координаты точки пересечения двух прямых a и b являются решением системы уравнений (смотрите статью решение систем линейных алгебраических уравнений).

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0.

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

M0 (4, 2) – точка пересечения прямых x-9y+14=0 и 5x-2y-16=0.

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду, а уже после этого находить координаты точки пересечения.

Определите координаты точки пересечения прямых  и .

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения  и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Определите координаты точки пересечения прямых  и .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида  и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y, которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Выясните, пересекаются ли прямые  и , и если пересекаются, то найдите координаты точки пересечения.

уравнения  и  определяют в прямоугольной системе координатOxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Найдите координаты точки пересечения прямых  и , если это возможно.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения метод Гаусса, так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

 - нормальный вектор прямой , а вектор  является нормальным вектором прямой . Проверим выполнение условия коллинеарности векторов  и : равенство  верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

К началу страницы

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Пусть пересекающиеся прямые a и b заданы в прямоугольной системе координат Oxyzуравнениями двух пересекающихся плоскостей, то есть, прямая a определяется системой вида , а прямая b - . Пусть М0 – точка пересечения прямых a и b. Тогда точка М0 по определению принадлежит и прямой a и прямойb, следовательно, ее координаты удовлетворяют уравнениям обеих прямых. Таким образом, координаты точки пересечения прямых a и b представляют собой решение системы линейных уравнений вида . Здесь нам пригодится информация из разделарешение систем линейных уравнений, в которых число уравнений не совпадает с числом неизвестных переменных.

Рассмотрим решения примеров.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями  и .

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим ранг матрицы А и ранг матрицы T. Используем метод окаймляющих миноров, при этом не будем подробно описывать вычисление определителей (при необходимости обращайтесь к статье вычисление определителя матрицы):

Таким образом, ранг основной матрицы равен рангу расширенной матрицы и равен трем.

Следовательно, система уравнений  имеет единственное решение.

Базисным минором примем определитель , поэтому из системы уравнений следует исключить последнее уравнение, так как оно не участвует в образовании базисного минора. Итак,

Решение полученной системы легко находится:

Таким образом, точка пересечения прямых  и  имеет координаты (1, -3, 0).

Следует отметить, что система уравнений  имеет единственное решение тогда и только тогда, когда прямые a и b пересекаются. Если же прямые а и bпараллельные или скрещивающиеся, то последняя система уравнений решений не имеет, так как в этом случае прямые не имеют общих точек. Если прямые a и b совпадают, то они имеют бесконечное множество общих точек, следовательно, указанная система уравнений имеет бесконечное множество решений. Однако в этих случаях мы не можем говорить о нахождении координат точки пересечения прямых, так как прямые не являются пересекающимися.

Таким образом, если мы заранее не знаем, пересекаются заданные прямые a и b или нет, то разумно составить систему уравнений вида  и решить ее методом Гаусса. Если получим единственное решение, то оно будет соответствовать координатам точки пересечения прямых a и b. Если система окажется несовместной, то прямые a и b не пересекаются. Если же система будет иметь бесконечное множество решений, то прямые a и bсовпадают.

Можно обойтись и без использования метода Гаусса. Как вариант, можно вычислить ранги основной и расширенной матриц этой системы, и на основании полученных данных и теоремы Кронекера-Капелли сделать вывод или о существовании единственного решения, или о существовании множества решений, или об отсутствии решений. Это дело вкуса.

Если прямые  и  пересекаются, то определите координаты точки пересечения.

Составим систему из заданных уравнений: . Решим ее методом Гаусса в матричной форме:

Стало видно, что система уравнений не имеет решений, следовательно, заданные прямые не пересекаются, и не может быть и речи о поиске координат точки пересечения этих прямых.

мы не можем найти координаты точки пересечения заданных прямых, так как эти прямые не пересекаются.

Когда пересекающиеся прямые заданы каноническими уравнениями прямой в пространствеили параметрическими уравнениями прямой в пространстве, то следует сначала получить их уравнения в виде двух пересекающихся плоскостей, а уже после этого находить координаты точки пересечения.

Две пересекающиеся прямые заданы в прямоугольной системе координат Oxyzуравнениями  и . Найдите координаты точки пересечения этих прямых.

intellect.ml

Координаты точки пересечения прямых | Треугольники

Две прямые на плоскости могут быть параллельными, пересекаться либо совпадать.

Чтобы найти координаты точки пересечения прямых, надо составить и решить систему уравнений, составленную из уравнений этих прямых.

Примеры.

Найти точку пересечения прямых заданных уравнениями:

1) y=6x+15; y= -5x-7;

2) 2x+3y+17=0; 5x-2y-43=0.

Решение:

1) Составляем систему уравнений (здесь даны уравнения прямой с угловым коэффициентом):

   

Приравняем правые части уравнений:

   

откуда

   

   

Подставим x= -2 в уравнение первой прямой:

   

Ответ: (-2;3).

2) Составляем систему уравнений (здесь задано общее уравнение прямой):

   

Умножим 1-е уравнение системы на 2, а 2-е — на 3

   

и сложим их почленно. Получим

   

откуда

   

Подставим x=5 в 1-е уравнение системы:

   

откуда

   

Ответ: (5; -9).

Уравнение прямой

www.treugolniki.ru

Точка пересечения двух прямых – определение (методическая разработка)

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

В разделе взаимное расположение прямых на плоскости показано, что две прямые на плоскости могут либо совпадать (при этом они имеют бесконечно много общих точек), либо быть параллельными (при этом две прямые не имеют общих точек), либо пересекаться, имея одну общую точку. Вариантов взаимного расположения двух прямых в пространстве больше – они могут совпадать (иметь бесконечно много общих точек), могут быть параллельными (то есть, лежать в одной плоскости и не пересекаться), могут быть скрещивающимися (не лежащими в одной плоскости), а также могут иметь одну общую точку, то есть, пересекаться. Итак, две прямые и на плоскости и в пространстве называются пересекающимися, если они имеют одну общую точку.

Из определения пересекающихся прямых следует определение точки пересечения прямых: точка, в которой пересекаются две прямые, называется точкой пересечения этих прямых. Другими словами, единственная общая точка двух пересекающихся прямых есть точка пересечения этих прямых.

Приведем для наглядности графическую иллюстрацию точки пересечения двух прямых на плоскости и в пространстве.

К началу страницы

Нахождение координат точки пересечения двух прямых на плоскости.

Прежде чем находить координаты точки пересечения двух прямых на плоскости по их известным уравнениям, рассмотрим вспомогательную задачу.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b. Будем считать, что прямой a соответствует общее уравнение прямой вида , а прямой b – вида . Пусть – некоторая точка плоскости, и требуется выяснить, является ли точка М0 точкой пересечения заданных прямых.

Решим поставленную задачу.

Если M0 является точкой пересечения прямых a и b, то по определению она принадлежит и прямой a и прямой b, то есть, ее координаты должны удовлетворять одновременно и уравнению и уравнению . Следовательно, нам нужно подставить координаты точки М0 в уравнения заданных прямых и посмотреть, получаются ли при этом два верных равенства. Если координаты точки М0 удовлетворяют обоим уравнениям и , то – точка пересечения прямых a и b, в противном случае М0 не является точкой пересечения прямых.

Пример.

Является ли точка М0 с координатами (2, -3) точкой пересечения прямых 5x-2y-16=0 и 2x-5y-19=0?

Решение.

Если М0 действительно точка пересечения заданных прямых, то ее координаты удовлетворяют уравнениям прямых. Проверим это, подставив координаты точки М0 в заданные уравнения:

Получили два верных равенства, следовательно, М0 (2, -3) - точка пересечения прямых 5x-2y-16=0 и 2x-5y-19=0.

Для наглядности приведем чертеж, на котором изображены прямые и видны координаты точки их пересечения.

Ответ:

да, точка М0 (2, -3) является точкой пересечения прямых 5x-2y-16=0 и 2x-5y-19=0.

Пример.

Пересекаются ли прямые 5x+3y-1=0 и 7x-2y+11=0 в точке M0 (2, -3)?

Решение.

Подставим координаты точки М0 в уравнения прямых, этим действием будем осуществлена проверка принадлежности точки М0 обеим прямым одновременно:

Так как второе уравнение при подстановке в него координат точки М0 не обратилось в верное равенство, то точка М0 не принадлежит прямой 7x-2y+11=0. Из этого факта можно сделать вывод о том, что точка М0 не является точкой пересечения заданных прямых.

На чертеже также хорошо видно, что точка М0 не является точкой пересечения прямых 5x+3y-1=0 и 7x-2y+11=0. Очевидно, заданные прямые пересекаются в точке с координатами (-1, 2).

Ответ:

М0 (2, -3) не является точкой пересечения прямых 5x+3y-1=0 и 7x-2y+11=0.

Теперь можно переходить к задаче нахождения координат точки пересечения двух прямых по заданным уравнениям прямых на плоскости.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b уравнениями и соответственно. Обозначим точку пересечения заданных прямых как М0 и решим следующую задачу: найти координаты точки пересечения двух прямых a и b по известным уравнениям этих прямых и .

Точка M0 принадлежит каждой из пересекающихся прямых a и b по определению. Тогда координаты точки пересечения прямых a и b удовлетворяют одновременно и уравнению и уравнению . Следовательно, координаты точки пересечения двух прямых a и b являются решением системы уравнений (смотрите статью решение систем линейных алгебраических уравнений).

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Пример.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0.

Решение.

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

Ответ:

M0 (4, 2) – точка пересечения прямых x-9y+14=0 и 5x-2y-16=0.

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду, а уже после этого находить координаты точки пересечения.

Пример.

Определите координаты точки пересечения прямых и .

Решение.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида

videouroki.net