Число Пи - значение, история, кто придумал. Как вычисляется число пи


Число Пи - значение, история, кто придумал

Все окружности похожи

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C1   C2  
=  
d1   d2 (1)

где C1 и С2 – длины двух разных окружностей, а d1 и d2 – их диаметры. Это соотношение работает при наличии коэффициента пропорциональности – уже знакомой нам константы π. Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π:

C = πd.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2πR.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

    C2  
S = ,
    12  

где S – площадь круга, C – длина окружности (круга). Если в эту формулу подставить уже знакомые школьнику выражения площади круга S = πr2 и длины окружности С = 2 πR, то мы получим:

    (2πR)2
πR2 =
    12

, откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

      8     2
S = ( d )  
      9      

Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

- Какое из двух числе больше 22/7 или 3.14 ?- Они равны.- Почему ?- Каждое из них равно π.А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: "переложите одну спичку так, чтобы равенство стало верным".

Решение будет таковым: нужно образовать "крышу" для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π.

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют "Архимедовым" числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π. В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

  10   6336       14688     1
3 < < π < < 3
  71     1         1     7
      2017       4673      
        4         2      

можно записать проще: 3,140 909 < π < 3,1 428 265...

Как видим из неравенств, Архимед нашел довольно-таки точное значение с точностью до 0,002. Самое удивительно то, что он нашел два первых знака после  запятой: 3,14... Именно такое значение чаще всего мы используем в несложных расчетах.

Практическое применение

Едут двое в поезде:− Вот смотри, рельсы прямые, колеса круглые. Откуда же стук?− Как откуда? Колеса-то круглые, а площадь круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π, это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 πR = πd,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

  C   C
R= =
    d

Обозначения для этих формул остаются те же.

Диаметр окружности можно найти по формуле:

где  D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

      α
S = πR2
      360˚

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием "Пи". Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют "День числа Пи". К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал: Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.

Число Пи - справочные материалы

Чему равно число Пи

Как запомнить число Пи

Число Пи в Excel

Число Пи на клавиатуре и в Word

Фотографии числа Пи

www.calculator888.ru

9 удивительных фактов о числе Пи

Увлеченные математикой люди по всему миру ежегодно съедают по кусочку пирога четырнадцатого марта – ведь это день числа Пи, самого известного иррационального числа. Эта дата напрямую связана с числом, первые цифры которого 3,14. Пи – это соотношение длины окружности к диаметру. Так как оно иррациональное, записать его в виде дроби невозможно. Это бесконечно длинное число. Его обнаружили тысячи лет назад и с тех пор постоянно изучают, но остались ли у Пи какие-нибудь секреты? От древнего происхождения до неопределенного будущего вот несколько наиболее интересных фактов о числе Пи.

Запоминание Пи

Рекорд в запоминании цифр после запятой принадлежит Раджвиру Мине из Индии, которому удалось запомнить 70 000 цифр – он поставил рекорд двадцать первого марта 2015 года. До этого рекордсменом был Чао Лу из Китая, которому удалось запомнить 67 890 цифр – этот рекорд был поставлен в 2005-м. Неофициальным рекордсменом является Акира Харагучи, записавший на видео свое повторение 100 000 цифр в 2005-м и не так давно опубликовавший видео, где ему удается вспомнить 117 000 цифр. Официальным рекорд стал бы только в том случае, если бы это видео было записано в присутствии представителя книги рекордов Гиннеса, а без подтверждения он остается лишь впечатляющим фактом, но не считается достижением. Энтузиасты математики любят заучивать цифру Пи. Многие люди используют различные мнемонические техники, к примеру стихи, где количество букв в каждом слове совпадает с цифрами Пи. В каждом языке существуют свои варианты подобных фраз, которые помогают запомнить как первые несколько цифр, так и целую сотню.

Существует язык Пи

Увлеченные литературой математики изобрели диалект, в котором число букв во всех словах соответствует цифрам Пи в точном порядке. Писатель Майк Кит даже написал книгу Not a Wake, которая полностью создана на языке Пи. Энтузиасты такого творчества пишут свои произведения в полном соответствии количества букв значению цифр. Это не имеет никакого прикладного применения, но является достаточно распространенным и известным явлением в кругах увлеченных ученых.

Экспоненциальный рост

Пи - это бесконечное число, поэтому люди по определению не смогут никогда установить точные цифры этого числа. Однако количество цифр после запятой сильно увеличилось со времен первого использования Пи. Еще вавилоняне им пользовались, но им было достаточно дроби в три целых и одну восьмую. Китайцы и создатели Ветхого Завета и вовсе ограничивались тройкой. К 1665 году сэр Исаак Ньютон вычислил 16 цифр Пи. К 1719 году французский математик Том Фанте де Ланьи вычислил 127 цифр. Появление компьютеров радикальным образом улучшило знания человека о Пи. С 1949 года по 1967-й количество известных человеку цифр стремительно выросло с 2037 до 500 000. Не так давно Петер Труэб, ученый из Швейцарии, смог вычислить 2,24 триллиона цифр Пи! На это потребовалось 105 дней. Разумеется, это не предел. Вполне вероятно, что с развитием технологий будет возможно установить еще более точную цифру - так как Пи бесконечно, предела точности просто не существует, и ограничить ее могут лишь технические особенности вычислительной техники.

Вычисление Пи вручную

Если вы хотите найти число самостоятельно, вы можете использовать старомодную технику – вам потребуются линейка, банка и веревка, можно также использовать транспортир и карандаш. Минус использования банки в том, что она должна быть круглой, и точность будет определяться тем, насколько хорошо человек может наматывать веревку вокруг нее. Можно нарисовать окружность транспортиром, но и это требует навыков и точности, так как неровная окружность может серьезно исказить ваши измерения. Более точный метод предполагает использование геометрии. Разделите круг на множество сегментов, как пиццу на кусочки, а потом вычислите длину прямой линии, которая превратила бы каждый сегмент в равнобедренный треугольник. Сумма сторон даст приблизительное число Пи. Чем больше сегментов вы используете, тем более точным получится число. Разумеется, в своих вычислениях вы не сможете приблизиться к результатам компьютера, тем не менее эти простые опыты позволяют более детально понять, что вообще представляет собой число Пи и каким образом оно используется в математике.

Открытие Пи

Древние вавилоняне знали о существовании числа Пи уже четыре тысячи лет назад. Вавилонские таблички исчисляют Пи как 3,125, а в египетском математическом папирусе встречается число 3,1605. В Библии число Пи дается в устаревшей длине – в локтях, а греческий математик Архимед использовал для описания Пи теорему Пифагора, геометрическое соотношение длины сторон треугольника и площади фигур внутри и снаружи кругов. Таким образом, можно с уверенностью сказать, что Пи является одним из наиболее древних математических понятий, хоть точное название данного числа и появилось относительно недавно.

Новый взгляд на Пи

Еще до того, как число Пи стали соотносить с окружностями, у математиков уже было множество способов даже для наименования этого числа. К примеру, в старинных учебниках по математике можно найти фразу на латыни, которую можно грубо перевести как «количество, которое показывает длину, когда на него умножается диаметр». Иррациональное число прославилось тогда, когда швейцарский ученый Леонард Эйлер использовал его в своих трудах по тригонометрии в 1737 году. Тем не менее греческий символ для Пи все еще не использовали – это произошло только в книге менее известного математика Уильяма Джонса. Он использовал его уже в 1706 году, но это долго оставалось без внимания. Со временем ученые приняли такое наименование, и теперь это наиболее известная версия названия, хотя прежде его называли также лудольфовым числом.

Нормальное ли число Пи?

Число Пи определенно странное, но насколько оно подчиняется нормальным математическим законам? Ученые уже разрешили многие вопросы, связанные с этим иррациональным числом, но некоторые загадки остаются. К примеру, неизвестно, насколько часто используются все цифры – цифры от 0 до 9 должны использоваться в равной пропорции. Впрочем, по первым триллионам цифр статистика прослеживается, но из-за того, что число бесконечное, доказать точно ничего невозможно. Есть и другие проблемы, которые пока ускользают от ученых. Вполне возможно, что дальнейшее развитие науки поможет пролить на них свет, но на данный момент это остается за пределами человеческого интеллекта.

Пи звучит божественно

Ученые не могут ответить на некоторые вопросы о числе Пи, тем не менее с каждым годом они все лучше понимают его суть. Уже в восемнадцатом веке была доказана иррациональность этого числа. Кроме того, было доказано, что число является трансцендентным. Это означает, что нет определенной формулы, которая позволила бы подсчитать Пи с помощью рациональных чисел.

Недовольство числом Пи

Многие математики просто влюблены в Пи, но есть и те, кто считает, что у этих цифр нет особенной значимости. Кроме того, они уверяют, что число Тау, которое в два раза больше Пи, более удобное в использовании как иррациональное. Тау показывает связь длины окружности и радиуса, что, по мнению некоторых, представляет более логичный метод исчисления. Впрочем, однозначно определить что-либо в данном вопросе невозможно, и у одного и у другого числа всегда будут сторонники, оба метода имеют право на жизнь, так что это просто интересный факт, а не повод думать, что пользоваться числом Пи не стоит.

fb.ru

Чему равно число ПИ? История открытия, тайны и загадки

Чему равно число Пи мы знаем и помним со школы. Оно равно 3.1415926 и так далее… Обычному человеку достаточно знать, что это число получается, если разделить длину окружности на ее диаметр. Но многим известно, что число Пи возникает в неожиданных областях не только математики и геометрии, но и в физике. Ну а если вникнуть в подробности природы этого числа, то можно заметить много удивительного среди бесконечного ряда цифр. Возможно ли, что Пи скрывает самые сокровенные тайны Вселенной?

Бесконечное число

Само число Пи возникает в нашем мире как длина окружности, диаметр которой равен единице. Но, несмотря на то, что отрезок равный Пи вполне себе конечен, число Пи начинается, как 3.1415926 и уходит в бесконечность рядами цифр, которые никогда не повторяются. Первый удивительный факт состоит в том, что это число, используемое в геометрии, нельзя выразить в виде дроби из целых чисел. Иначе говоря, вы не сможете его записать отношением двух чисел a/b. Кроме этого число Пи трансцендентное. Это означает, что нет такого уравнения (многочлена) с целыми коэффициентами, решением которого было бы число Пи.

То, что число Пи трансцендентно, доказал в 1882 году немецкий математик фон Линдеман. Именно это доказательство стало ответом на вопрос, можно ли с помощью циркуля и линейки нарисовать квадрат, у которого площадь равна площади заданного круга. Эта задача известна как поиск квадратуры круга, волновавший человечество с древнейших времен. Казалось, что эта задача имеет простое решение и вот-вот будет раскрыта. Но именно непостижимое свойство числа Пи показало, что у задачи квадратуры круга решения не существует.

В течение как минимум четырех с половиной тысячелетий человечество пыталось получить все более точное значение числа Пи. Например, В Библии в Третьей Книги Царств (7:23) число Пи принимается равным 3.

Замечательное по точности значение Пи можно обнаружить в пирамидах Гизы: соотношение периметра и высоты пирамид составляет 22/7. Эта дробь дает приближенное значение Пи, равное 3.142… Если, конечно, египтяне не задали такое соотношение случайно. Это же значение уже применительно к расчету числа Пи получил в III веке до нашей эры великий Архимед.

В папирусе Ахмеса, древнеегипетском учебнике по математике, который датируется 1650 годом до нашей эры, число Пи рассчитано как 3.160493827.

В древнеиндийских текстах примерно IX века до нашей эры наиболее точное значение было выражено числом 339/108, которое равнялось 3,1388…

После Архимеда почти две тысячи лет люди пытались найти способы рассчитать число Пи. Среди них были как известные, так и неизвестные математики. Например, римский архитектор Марк Витрувий Поллион, египетский астроном Клавдий Птолемей, китайский математик Лю Хуэй, индийский мудрец Ариабхата, средневековый математик Леонардо Пизанский, известный как Фибоначчи, арабский ученый Аль-Хорезми, от чьего имени появилось слово «алгоритм». Все они и множество других людей искали наиболее точные методики расчета Пи, но вплоть до 15 века никогда не получали больше чем 10 цифр после запятой в связи со сложностью расчетов.

Наконец, в 1400 году индийский математик Мадхава из Сангамаграма рассчитал Пи с точностью до 13 знаков (хотя в двух последних все-таки ошибся).

Количество знаков

В 17 веке Лейбниц и Ньютон открыли анализ бесконечно малых величин, который позволил вычислять Пи более прогрессивно – через степенные ряды и интегралы. Сам Ньютон вычислил 16 знаков после запятой, но не упомянул это в своих книгах – об этом стало известно после его смерти. Ньютон утверждал, что занимался расчетом Пи исключительно от скуки.

Примерно в то же время подтянулись и другие менее известные математики, предложившие новые формулы расчета числа Пи через тригонометрические функции.

Например, вот по какой формуле рассчитывал Пи преподаватель астрономии Джон Мэчин в 1706 году: PI / 4 = 4arctg(1/5) – arctg(1/239). С помощью методов анализа Мэчин вывел из этой формулы число Пи с сотней знаков после запятой.

Кстати, в том же 1706 году число Пи получило официальное обозначение в виде греческой буквы: его в своем труде по математике использовал Уильям Джонс, взяв первую букву греческого слова «периферия», что означает «окружность». Родившийся в 1707 великий Леонард Эйлер популяризовал это обозначение, нынче известное любому школьнику.

До эры компьютеров математики занимались тем, чтобы рассчитать как можно больше знаков. В связи с этим порой возникали курьезы. Математик-любитель У. Шенкс в 1875 году рассчитал 707 знаков числа Пи. Эти семь сотен знаков увековечили на стене Дворца Открытий в Париже в 1937 году. Однако спустя девять лет наблюдательными математиками было обнаружено, что правильно вычислены лишь первые 527 знаков. Музею пришлось понести приличные расходы, чтобы исправить ошибку – сейчас все цифры верные.

Когда появились компьютеры, количество цифр числа Пи стало исчисляться совершенно невообразимыми порядками.

Один из первых электронных компьютеров ENIAC, созданный в 1946 году, имевший огромные размеры, и выделявший столько тепла, что помещение прогревалось до 50 градусов по Цельсию, вычислил первые 2037 знаков числа Пи. Этот расчет занял у машины 70 часов.

По мере совершенствования компьютеров наше знание числа Пи все дальше и дальше уходило в бесконечность. В 1958 году было рассчитано 10 тысяч знаков числа. В 1987 году японцы высчитали 10 013 395 знаков. В 2011 японский исследователь Сигеру Хондо превысил рубеж в 10 триллионов знаков.

Где еще можно встретить Пи?

Итак, зачастую наши знания о числе Пи остаются на школьном уровне, и мы точно знаем, что это число незаменимо в первую очередь в геометрии.

Помимо формул длины и площади окружности число Пи используется в формулах эллипсов, сфер, конусов, цилиндров, эллипсоидов и так далее: где-то формулы простые и легко запоминающиеся, а где-то содержат очень сложные интегралы.

Затем мы можем встретить число Пи в математических формулах, там, где, на первый взгляд геометрии и не видно. Например, неопределенный интеграл от 1/(1-x^2) равен Пи.

Пи часто используется в анализе рядов. Для примера приведем простой ряд, который сходится к числу Пи:

1/1 – 1/3 + 1/5 – 1/7 + 1/9 — …. = PI/4

Среди рядов число Пи наиболее неожиданно появляется в известной дзета-функции Римана. Рассказать про нее в двух словах не получится, скажем лишь, что когда-нибудь число Пи поможет найти формулу расчета простых чисел.

И совершенно удивительно: Пи появляется в двух самых красивых «королевских» формулах математики – формуле Стирлинга (которая помогает найти приблизительное значение факториала и гамма-функции) и формуле Эйлера (которая связывает аж целых пять математических констант).

Однако самое неожиданное открытие ожидало математиков в теории вероятности. Там тоже присутствует число Пи.

Например, вероятность того, что два числа окажутся взаимно простыми, равна 6/PI^2.

Пи появляется в задаче Бюффона о бросании иглы, сформулированной в 18 веке: какова вероятность того, что брошенная на расчерченный лист бумаги игла пересечет одну из линий. Если длина иглы L, а расстояние между линиями L, и r > L то мы можем приблизительно рассчитать значение числа Пи по формуле вероятности 2L/rPI. Только представьте – мы можем получить Пи из случайных событий. И между прочим Пи присутствует в нормальном распределении вероятностей, появляется в уравнении знаменитой кривой Гаусса. Значит ли это, что число Пи еще более фундаментально, чем просто отношение длины окружности к диаметру?

Мы можем встретить Пи и в физике. Пи появляется в законе Кулона, который описывает силу взаимодействия между двумя зарядами, в третьем законе Кеплера, который показывает период обращения планеты вокруг Солнца, встречается даже в расположении электронных орбиталей атома водорода. И что опять же самое невероятное – число Пи прячется в формуле принципа неопределенности Гейзенберга – фундаментального закона квантовой физики.

Тайны числа Пи

В романе Карла Сагана «Контакт», по которому снят одноименный фильм, инопланетяне сообщают героине, что среди знаков Пи содержится тайное послание от Бога. С некоторой позиции цифры в числе перестают быть случайными и представляют себе код, в котором записаны все секреты Мироздания.

Этот роман на самом деле отразил загадку, занимающую умы математиков всей планеты: является ли число Пи нормальным числом, в котором цифры разбросаны с одинаковой частотой, или с этим числом что-то не так. И хотя ученые склоняются к первому варианту (но не могут доказать), число Пи выглядит очень загадочно. Один японец как то подсчитал, сколько раз встречаются числа от 0 до 9 в первом триллионе знаков Пи. И увидел, что числа 2, 4 и 8 встречаются чаще, чем остальные. Это может быть одним из намеков на то, что Пи не совсем нормальное, и цифры в нем действительно не случайны.

Вспомним всё, что мы прочли выше, и спросим себя, какое еще иррациональное и трансцендентное число так часто встречается в реальном мире?

А в запасе имеются еще странности. Например, сумма первых двадцати цифр Пи равна 20, а сумма первых 144 цифр равна «числу зверя» 666.

Главный герой американского сериала «Подозреваемый» профессор Финч рассказывал студентам, что в силу бесконечности числа Пи в нем могут встретиться любые комбинации цифр, начиная от цифр даты вашего рождения до более сложных чисел. Например, на 762-ой позиции находится последовательность из шести девяток. Эта позиция называется точкой Фейнмана в честь известного физика, который заметил это интересное сочетание.

Нам известно также, что число Пи содержит последовательность 0123456789, но находится она на 17 387 594 880-й цифре.

Все это означает, что в бесконечности числа Пи можно обнаружить не только интересные сочетания цифр, но и закодированный текст «Войны и Мира», Библии и даже Главную Тайну Мироздания, если таковая существует.

Кстати, о Библии. Известный популяризатор математики Мартин Гарднер в 1966 году заявил, что миллионным знаком числа Пи (на тот момент еще неизвестным) будет число 5. Свои расчеты он объяснил тем, что в англоязычной версии Библии, в 3-й книге, 14-й главе, 16-м стихе (3-14-16) седьмое слово содержит пять букв. Миллионную цифру получили спустя восемь лет. Это было число пять.

Стоит ли после этого утверждать, что число Пи случайно?

Похожее

uchitelskaia.ru

Как вычислить число пи

Греческой буквой ? (пи, pi) принято обозначать отношение длины окружности к ее диаметру. Это число, первоначально появившись в трудах древних геометров, впоследствии оказалось очень важным в очень многих отраслях математики. А значит, его нужно уметь вычислять.

Спонсор размещения P&G Статьи по теме "Как вычислить число пи " Как складывать квадратные корни Как найти диагональ квадрата Как найти координаты вершины параболы

Инструкция

1

? — иррациональное число. Это значит, что его невозможно представить в виде дроби с целым числителем и знаменателем. Более того, ? — трансцендентное число, то есть оно не может служить решением никакого алгебраического уравнения. Таким образом, точное значение числа ? записать невозможно. Однако есть методы, позволяющие вычислить его с любой требующейся степенью точности.

2

Древнейшие приближения, которыми пользовались геометры Греции и Египта, говорят, что ? примерно равно квадратному корню из 10 или дроби 256/81. Но эти формулы дают значение ?, равное 3,16, а этого явно недостаточно.

3

Архимед и другие математики вычисляли ? с помощью сложной и трудоемкой геометрической процедуры — измерения периметров вписанных и описанных многоугольников. Полученное ими значение было равно 3,1419.

4

Еще одна приближенная формула определяет, что ? = v2 + v3. Она дает значение для ?, примерно равное 3,146.

5

С развитием дифференциального исчисления и других новых математических дисциплин в распоряжении ученых появился новый инструмент — степенные ряды. Готфрид Вильгельм Лейбниц в 1674 году обнаружил, что бесконечный ряд1 - 1/3 + 1/5 - 1/7 + 1/9... + (1/(2n+1)*(-1)^nв пределе сходится к сумме, равной ?/4. Вычислять эту сумму просто, однако, чтобы достичь достаточной точности, понадобится много шагов, поскольку ряд сходится очень медленно.

6

Впоследствии были обнаружены и другие степенные ряды, позволяющие вычислять ? быстрее, чем при помощи ряда Лейбница. Например, известно, что tg(?/6) = 1/v3, следовательно, arctg(1/v3) = ?/6.Функция арктангенса раскладывается в степенной ряд, и для заданного значения мы в результате получаем:? = 2v3*(1 - (1/3)*(1/3) + (1/5)*(1/3)^2 - (1/7)*(1/3)^3… + 1/((2n + 1)*(-3)^n)…)При помощи этой и других аналогичных формул число ? было вычислено уже с точностью до миллионов знаков после запятой.

7

Для большинства практических расчетов вполне достаточно знать число ? с точностью до семи знаков после запятой: 3,1415926. Его можно легко запомнить при помощи мнемонической фразы: «Три — четырнадцать — пятнадцать — девяносто два и шесть».

Как просто

masterotvetov.com

Число Пи

Число Пи

Введение

число пи вычисление ньютон

«Число Пи - это математическая константа, через которую выражается отношение длины окружности к её диаметру. И это число приблизительно равно 3,14.». Одним из первых заметил и высчитал такую интересную зависимость между длиной окружности и её диаметром Архимед, он и дал первое приближение такого числа, что равно 3 1/7

И даже вычислил, что это число больше за 3 10/71 , но меньше за 3 1/7

Но есть данные, что и за почти 2 тысячи лет до н.э. людям было известно о такой зависимости, только они её высчитывали очень приблизительно. А обозначил это число греческой буквой ? первым британский математик Джонс в 1706 году, и общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

Число Пи используется не только в геометрии, математическом анализе или теории вероятности, но и во многих других отраслях науки, говорят, что учёные пытаются расшифровать человеческое ДНК с помощью этого магического числа. И даже есть много трагических историй, которые связаны с этим магическим числом. Говорят, что многие учёные разговаривали с этим числом, и говорили, что оно может думать. Но эта информация не подтверждена.

Ещё есть много разных историй связанных с запоминанием числа Пи. Многие используют разные стишки, вот например:

Кто и шутя, и скоро пожелает

"Пи" узнать - число уж знает.

Здесь число букв в каждом слове - это следующая цифра числа Пи.

Или такое:

Чтобы нам не ошибаться,

Надо правильно прочесть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Ну и дальше надо знать,

Если мы вас спросим -

Это будет пять, три, пять,

Восемь, девять, восемь.

А мировой рекорд по запоминанию числа Пи у китайца Лю Чао, который сумел запомнить 67 890 знаков после запятой без ошибки и воспроизвёл их в течении 24 часов и 4 минут. Сейчас с помощью компьютера высчитали 5 триллионов цифр после запятой, так что есть куда расти .

Целью нашей работы является изучение интересных фактов о числе ?.

Вычисление числа ? и его свойства

января 2010 французы вычислили Пи с рекордной точностью.

Француз Фабрис Беллар вычислил число Пи с рекордной точностью. Об этом сообщается на его официальном сайте. Новый рекорд составляет около 2,7 триллиона (2 триллиона 699 миллиардов 999 миллионов 990 тысяч) десятичных знаков. Предыдущее достижение принадлежит японским ученым, которые посчитали константу с точностью до 2,6 триллиона десятичных знаков. Беллар потратил на вычисления около 103 дней.

Все расчеты проводились на домашнем компьютере, стоимость которого лежит в пределах 2000 евро. Для сравнения, предыдущий рекорд был установлен на суперкомпьютере T2K Tsukuba System, у которого ушло на работу около 73 часов. Сначала Пи рассчитывалось в двоичной системе, после чего переводилось в десятичную. На это ушло около 13 дней. В общей сложности для хранения всех цифр требуется 1,1 терабайта дискового пространства.

Подобные вычисления имеют не только прикладное значение. Так, в настоящее время с Пи связано множество нерешенных задач. Например, известно, что Пи и e (основание экспоненты) являются трансцендентными числами, то есть не являются корнями никакого многочлена с целыми коэффициентами. При этом, однако, является ли сумма этих двух фундаментальных констант трансцендентным числом или нет - неизвестно до сих пор.

До сих пор не доказана нормальность числа Пи: встречаются ли в нем все цифры от 0 до 9 одинаково часто, или какая-то цифра встречается чаще, чем другие. Если Пи понимать, как отношение длины окружности к её диаметру, то само это число, очевидно, не представляло бы особого интереса.

Число Пи одна из фундаментальных математических констант. Оно встречается во многих уравнениях различных направлений науки, например, в уравнениях гравитационного поля Эйнштейна, в уравнениях, связанных с образованием радуги, в уравнениях описывающих распространение зыби при падении дождевой капли в воду, в уравнении нормального распределения Гаусса, в уравнении движения маятника, во многих геометрических задачах, в задачах связанных с волнами, в задачах навигации и т.д.

Несколько «неожиданный» пример уравнения, в котором есть число Пи - формула Стирлинга для подсчета числа перестановок n предметов (факториала n, который обозначается n! и равен n!=1*2*3*…*n). Формула Стирлинга позволяет упростить процесс вычислений n! для больших n:

основание натуральных логарифмов.

Иррациональность этого числа, заключающаяся в том, что его нельзя представить отношением p/q, где q?0 и p, q - натуральные числа, была доказана Ламбертом в 1761 г. Трансцендентность числа пи доказал Линдеман в 1882 г. Численное значение Пи можно приближенно определить одним из двух методов с любой необходимой степенью точности.

Первый из этих методов - геометрический. Он состоит в вычислении периметров многоугольника вписанного в окружность и многоугольника описанного вокруг неё, причем предполагается, что длина окружности заключена между значениями этих периметров. Приближение будет более точным, если вместо периметров использовать площади.

Второй, современный метод, опирается на использование определенных бесконечно сходящихся рядов, сумма которых равна Пи или выражается через Пи.

Можно сказать, что те из вычислявших Пи математиков, которые использовали первый метод, исходили из геометрического определения числа Пи, а те, кто использовал аналитические методы, трактовали это число как математический символ, возникающий в многочисленных разделах математического анализа и обозначающий некоторую константу, значение которой можно (и нужно) найти.

В Египте примерно в 1700 г. до н. э. принимали, что Пи равно 256/81, что в десятичной записи соответствует 3.1605. В Вавилоне и Иудее использовалось более грубое приближение в виде числа 3. Скорее всего, эти числа были получены эмпирически - опытным путем. Уже в самых ранних индоевропейских цивилизациях было известно, что площадь круга пропорциональна квадрату его радиуса, а длина окружности пропорциональна её диаметру.

Величайший математик древности Архимед из Сиракуз в своем трактате «Измерение круга» (III до н.э.) строго доказал равенство двух указанных отношений. Он вычислил и приближенное значение Пи, причем на основе математических принципов, а не прямых измерений диаметра, площади круга и длины окружности. Архимед вписывал в окружность и описывал вокруг неё правильные многоугольники (т.е. многоугольники со сторонами одинаковой длины). Диаметр окружности принимался за единицу, а периметры вписанного и описанного многоугольников рассматривались как приближения соответственно снизу и сверху к длине окружности, которая в данном случае численно совпадает с Пи.

Этот метод приближения Пи не был новшеством: еще раньше вписывать многоугольники с возрастающим числом сторон предложил Антифон, а его современник Брисон из Гераклеи дополнительно ввел описанные многоугольники. Новшеством был выполненный Архимедом правильный расчет результата удвоения числа сторон как вписанного, так и описанного многоугольников. Тем самым он разработал процедуру, повторение которой достаточное число раз в принципе позволяет вычислить Пи с любым количеством знаков.

Следует заметить, что периметр правильного многоугольника легко вычисляется с помощью простых тригонометрических функций: синуса, косинуса и тангенса, однако во времена Архимеда, т. е. в III в. до н.э. эти функции еще не были полностью изучены и вычисление периметров было далеко не таким легким делом, как может сейчас показаться.

Архимед начал с вписанного и описанного шестиугольников и получил неравенство .

Четырежды удвоив число сторон (т. е. доведя его до 96), он сузил интервал для Пи: и получил приближенное значение ? 3,14. Есть некоторые основания предполагать, что дошедший до нас текст трактата «Измерение круга» представляет собой часть более обширного труда, в котором Архимед объясняет, как, начав с десятиугольников и применив шесть раз операцию удвоения, он получил приближение с пятью знаками; ??3,1416. Сам по себе метод Архимеда прост, но при отсутствии готовых таблиц тригонометрических функций требует извлечения корней; выполнение этой операции вручную занимает довольно много времени. Кроме того, приближения сходятся к Пи очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо. Тем не менее, до середины XVII в. все попытки европейских ученых вычислить Пи, так или иначе, опирались на этот метод.

Из приближений, известных грекам, следует ещё упомянуть лишь данное Птолемеем, который утверждал, что Пи=3º8'30", т.е. что (в современной записи) p=3+8/60+30/3600?3.1416.

Прежде, чем переходить к средневековым и современным европейским математикам, уместно сказать о результатах полученных в Индии, Китае и на Востоке.

Китайский астроном Чжан Хэн во II в. утверждал, что вторая степень длины окружности относится ко второй степени периметра квадрата, описанного вокруг окружности, как 5:8. Это отношение соответствует приблизительно . Подобное значение Пи встречается у индийского математика Брахмагупты (VII в.) и у среднеазиатского математика и астронома Мухамеда бен Мусы аль Хорезми (IX в).

Ариабхата (примерно в 530 г.) дает значение Пи=62832/20000, что равно 3,1416. Бхаскара (около 1150 г.) указал два приближения. Одно из них (возможно, почерпнутое от Ариабхаты, но вычисленное заново методом Архимела с помощью периметров правильных 384-угольников) равно 3927/1250, т. е. 3,1416. Китайский астроном Цзу Чун Чжи (род. в 430 г.) доказал, что значение Пи лежит между 3,1415926 и 3,1415927, и указал значение 355/113, которое он назвал «правильным».

Среди арабских математиков следует отметить Дж. Г. ал-Каши (около 1436 г.), который нашел для 2? значение 6,2831853071795865. Это значение, верное во всех 16 десятичных знаках, было получено из вычисленного им ранее в шестидесятеричной системе значения с 9 знаками. Этим он поставил рекорд, продержавшийся до 1596 г. Кроме того, почти наверняка можно сказать, что это был первый пример переведения дроби из одной системы счисления в другую.

Возвращаясь к европейским математикам, проследим, как были найдены последовательные приближения для числа Пи (причем многие из полученных до XVIII в. значений были первоначально вычислены, чтобы доказать ошибочность какой-то якобы найденной квадратуры).

Леонардо Пизанский (Фибоначчи) в XIII в. дал для Пи значение 1440/458 1/3, что равно 3,1418…. В XV в. Пурбах указал (вычисленное, возможно, не им) значение 62832/20000, равное 3,1416. Николай Кузанский считал, что точным значением Пи будет равное 3,1423, и говорят, что в 1464 г. Региомонтан (Иоганн Мюллер) дал значение 3,14243. Виет в 1579 г. показал, что Пи больше, чем 3,1415926535, и меньше, чем 3,1415926537. Этот результат Виет получил на основании значений периметров вписанных и описанных многоугольников с 6*216 сторонами, вычисленных многократным применением формулы 2sin2(?/2) =1-cos?. Он также установил результат, эквивалентный формуле:

Отец Адриан Меций в 1585 г. привел для Пи значение 355/113, равное 3,14159292… ,-правильное в шести десятичных знаках. Это была любопытная и счастливая догадка, так как доказал он лишь, что значение Пи лежит в пределах между 377/120 и 333/106, и отсюда заключил, что истинное дробное значение Пи он получит, если возьмет среднее значение числителей и среднее значение знаменателей этих дробей.

В 1593 г. Адриeн ван Роомен вычислил периметр вписанного правильного многоугольника с 1073741824 (т. е. 230) сторонами и отсюда определил Пи с 15 правильными десятичными знаками.

Индийские математики, стремясь к уточнению числа пи, пришли к результатам, которые в европейской математике были вновь открыты только в XVII-XVIII вв., например, разложение arctg в степенной ряд (Дж. Грегори, 1671 г.; Г. Лейбниц, 1673 г.), степенные ряды для sin, cos, arcsin (И. Ньютон, 1666 г.) и т.п.

Голландский математик Лудольф ван Цейлен посвятил вычислению p значительную часть жизни. В 1596 г. он указал значение Пи с точностью до 20 десятичных знаков - они были получены путем определения периметров вписанного и описанного правильных многоугольников с 60*233 сторонами, что Цейлен сделал с помощью многократного применения своей собственной теоремы, эквивалентной формуле 1-cosА = 2sin2(А/2).

Цейлен умер в 1610 г.; по его распоряжению полученный им результат с 35 десятичными знаками (именно столько знаков он вычислил) был выгравирован на его надгробии в церкви св. Петра в Лейдене. В его книге по арифметике, опубликованной после его смерти, указано 32 десятичных знака числа Пи, найденные вычислением периметра многоугольника, имеющего262, т. е. 4611686018427387904, сторон. В некоторых европейских странах число Пи называют числом Лудольфа.

Виллеброрд Снелль в 1621 г. получил с помощью 230 - yгoльникa приближение с 34 десятичными знаками. Это меньше, чем у ван Цейлена, но метод Снелля был настолько совершеннее, что свои 34 знака он сумел получить с помощью многоугольника, из которого ван Цейлону удалось «извлечь» только 14 (или, быть может, 16) знаков.

Используя шестиугольник, Снелль нашел столь верное, приближение для числа Пи, для которого Архимеду понадобился 96-угольник, а 96-угольник позволил Снеллю правильно вычислить 7 десятичных знаков, тогда как Архимед получил только два. Это объясняется тем, что Архимед, вычисляя длину сторон вписанного и описанного правильных n-угольников, считал, что 1/n длины окружности лежит между этими значениями, в то время как Снелль, исходя из сторон этих многоугольников, строил две другие линии, дающие более точные пределы для определения длины соответствующей дуги. Метод Снелля опирался на теорему 3sin?/ (2 + cos ?) < ? < 2 sin (?/3) + tg(?/3), которая позволила ему с помощью n-угольника получить число правильных знаков, большее или равное целой части от 4 lg(n)-0,2305. Это вдвое больше, чем удавалось получить старыми методами. Доказательство Снелля его теоремы ошибочно, однако сама теорема верна.

В 1630 г. Гринбергер с помощью теоремы Снелля довел приближенное значение Пи до 39 десятичных знаков. Он был последним из математиков, пользовавшихся классическим методом вычисления Пи с помощью периметров вписанного и описанного многоугольников. Дальнейшее уточнение значения Пи представлялось уже бесполезным.

Доказательства теорем, использованных Снеллем и другими математиками, вычислявшими Пи этим методом, дал Гюйгенс в работе "De Circula Magnitudine Inventa", 1654, которую можно считать заключительной в истории данного метода. В 1659 г. Валлис доказал, что

и с помощью одного результата, установленного несколькими годами ранее Броункером, вывел формулу в виде цепной дроби:

но ни одна из этих формул для вычислений всерьез не использовалась из за слишком медленной сходимости.

Развитие анализа в основном с трудами Исаака Ньютона и Готфрида Вильгельма Лейбница позволило намного ускорить вычисление приближенных значений Пи.

Сам Ньютон нашел 15 знаков Пи, суммируя несколько первых членов ряда для арксинуса. Позднее он писал одному из коллег: «Мне стыдно сказать вам, до скольких знаков я выполнил эти вычисления, не занимаясь больше ничем». В 1674 г. Лейбниц вывел формулу 1 - 1/3 + 1/5 - 1/7 + ... = ?/4 (арктангенс единицы).

Общий ряд для арктангенса был открыт в 1671 г. шотландским математиком Джеймсом Грегори, хотя аналогичные выражения, по-видимому, были получены в Индии на несколько столетий раньше. Джеймс Грегори, установил, что

Этот результат верен лишь в том случае, если X лежит между -?/4 и ?/4.

Погрешность приближения Лейбница, определяемая как разность между суммой n членов ряда и точным значением ?/4 , приблизительно равна (n + 1)-му члену. Так как знаменатель каждого следующего слагаемого возрастает лишь на два, то, чтобы получить приближение с точностью до двух знаков, приходится суммировать около 50 членов, с точностью до трех знаков - около 500 и т. д. Таким образом, этот ряд практически непригоден для нахождения более чем нескольких первых знаков Пи.

Спасла положение формула Джона Мэчина:

Поскольку ряд для арктангенса при заданном значении переменной сходится тем быстрее, чем меньше это значение, благодаря этой формуле вычисления сильно упростились. Пользуясь своей формулой и рядом для арктангенса, Мэчин в 1706 г. вычислил 100 знаков Пи.

Его метод оказался столь мощным, что с начала XVIII в. и до самого недавнего времени все вычисления Пи с большим числом знаков были выполнены с помощью тех или иных вариантов этого метода. p>Вега в 1789 г. указал значение Пи с точностью до 143 десятичных знаков (из них верных оказалось лишь 126), а в 1794 г. - с точностью до 140 знаков (из них 136 верных).

К концу XVIII в. фон Цах обнаружил в Научной библиотеке Радклнфа в Оксфорде рукопись неизвестного автора, в которой значение Пи было указано с точностью до 154 десятичных знаков (из них 152 верных). В 1837 г. этот результат был опубликован.

В 1841 г. Резерфорд, используя формулу

вычислил 208 знаков (из них 152 верно).

Из вычислений, проведенных в XIX в., два следует упомянуть особо. В 1844 г. Иоганн Дазе нашел 205 знаков Пи в течение нескольких месяцев, вычисляя значения трех арктангенсов и пользуясь формулой, аналогичной формуле Мэчина:

Дазе не был математиком, он был чудо вычислителем: он мог примерно за 8 часов перемножать в уме два стозначных числа. (Его, наверное, можно считать предтечей современного суперкомпьютера, по крайней мере, по объему памяти).

В 1853 г. Уильям Шенкс обошел Дазе, опубликовав полученное им значение Пи с 607 знаками, хотя, начиная с 528-го все остальные оказались неверными. Шенкс потратил на свой труд многие годы - это было рутинное, хотя и трудоемкое применение формулы Мэчина. Своеобразным рекордом стало и то, что ошибка Шенкса была обнаружена только через 92 года при сравнении его значений с приближением Пи до 530 знаков, вычисленным Д.Ф. Фергюсоном с помощью механического калькулятора.

В 1947 Фергюсон и Вренч, используя механический калькулятор, достигли точности 808 знаков. В 1914 г. индийский математик Рамануджан предложил для вычисления Пи использовать формулу:

Сумма последовательности Рамануджана сходится к истинному значению 1/? гораздо быстрее всех предыдущих формул: каждый очередной член последовательности добавляет, восемь новых правильных цифр.

С появлением цифровых вычислительных машин попытки найти еще больше десятичных знаков Пи возобновились, так как машина идеально приспособлена к долгому и упорному «перемалыванию» чисел. В июне 1949 г. Джон фон Нейман и его сотрудники применили один из первых цифровых компьютеров ENIAC. Машина выдала 2037 знаков за 70 часов. В 1957 г. Г.Э. Фелтон пытался вычислить 10 000 знаков Пи, но из-за ошибки компьютера только первые 7480 знаков оказались правильными. Рубеж в 10 000 знаков был достигнут годом позже Ф. Женюи с помощью компьютера IBM 704.

В 1961 г. Дэниел Шенкс (по утверждению М. Гарднера, не имеющий отношения к Уильяму Шенксу), и Джон У. Ренч-младший вычислили 100 000 знаков p с помощью компьютера IBM 7090 менее чем за 9 часов.

Отметка в миллион знаков была пройдена в 1973 г. Жаном Гийу и М. Буйе. Это заняло чуть меньше суток работы компьютера CDC 7600. (Вычисления Шенкса - Ренча и Гийу - Буйе были проделаны дважды при помощи двух разных выражений для Пи через арктангенсы. С учетом всех ошибок, допущенных в подобных вычислениях как человеком, так и машиной, только после такой проверки современные «охотники за знаками» считают рекорд официально установленным).

Главная причина, по которой стало возможным все более точное вычисление Пи, состояла в увеличении быстродействия компьютеров. Однако вскоре выявились серьезные препятствия к дальнейшему росту точности. При традиционных способах выполнения на компьютере арифметических действий, если бы мы захотели удвоить число знаков, нам пришлось бы увеличить время вычислений по крайней мере вчетверо. Таким образом, даже при стократном увеличении быстродействия программе Гийу и Буйе для получения миллиардного знака Пи понадобилось бы четверть века машинного времени.

В 70-е годы казалось, что такое вычисление практически невыполнимо. Однако теперь эта задача осуществима, причем не только благодаря появлению «скоростных» компьютеров, но и благодаря применению новых методов умножения чисел. В 1982 г. за 30 часов работы компьютера HITAC M-280H они вычислили 16 777 206 знаков Пи. В 80-х годах Джонотан Борвейн и Питер Борвейн предложили квадратично сходящийся алгоритм, в котором на каждой итерации число знаков увеличивается вчетверо.

В январе 1986 г. Дэвид X. Бейли из Исследовательского центра Национального управления по аэронавтике и исследованию космического пространства, пользуясь этим алгоритмом, после 12 итераций на суперкомпьютере Сгау-2 получил 29 360 000 десятичных знаков Пи. Год спустя Я. Канада и его сотрудники выполнили еще одну итерацию на суперкомпьютере NEC SX-2 и получили 134 217 000 знаков, проверив тем самым своей более ранний такой же результат, полученный с помощью алгоритма Гаусса-Брента-Саламина. Еще две итерации алгоритма - дали бы более двух миллиардов знаков Пи.

В 1988 (Канада и Тамура) удалось за 6 часов на компьютере Hitachi 820 вычислить 201 326 551 правильных знаков Пи. В 1989 г. было установлено два рекорда в вычислениях Пи: 500 000 000 и 1 миллиард знаков. В 1989 г. братья Чудновские вычислили 1 011 196 961 десятичных цифр числа Пи за 120 час. работы суперкомпьютера IBM 3090/VF и за 28 час. работы CRAY 2. Эти компьютеры они установили у себя дома в Ист-Сайде (Манхеттен. Нью-Йорк). Братья использовали формулу:

Но в скором времени Канада, применив алгоритм Гаусса-Брента-Салмина, за 161 час работы компьютера вычислил 1 073 741 799 цифр числа Пи. Затем братья Чудновские в 1991 г. вычислили 2.16 миллиарда цифр, к 1994 г. они перешли рубеж в 4 миллиарда цифр. В октябре 1995 г. Канада и Такахаши вычислили 6 442 450 938 цифр числа Пи. В 1996 г. был установлен рекорд 8 миллиардов цифр, а в 1997 г. за 29 час. работы суперкомпьютера Hitachi SR2201 было получено 51 539 600 000 цифр. Суперкомпьютер Hitachi SR2201 содержит 1024 процессоров и 212 гигабайт RAM (ОЗУ).

В сентябре 1999 г. в Токийском Университете Д.Такахаши и Я.Канада вычислили на компьютере HITACHI SR8000 со 128 процессорами 206,158,430,000 цифры числа Пи. В 2002 г. группа японских ученых из токийского университета во главе с профессором Ясумасой Канадой сумела поставить новый мировой рекорд - посчитать число Пи до 1.24-триллионного знака. Таким образом японцы протестировали новый суперкомпьютер Hitachi. Машина посчитала это число за 400 часов рабочего времени. Программа для выполнения этой операции разрабатывалась в течение пяти лет. Суперкомпьютер, поставивший рекорд, способен выполнять два триллиона операций в секунду. Рекорд Я. Канады и его сотрудников продержался до 2009 г. В 2009 г. ученым из Университета Цукуба (Япония) удалось превзойти своих коллег более чем в два раза: новый рекорд точности вычисления числа Пи составляет более чем 2,5 триллиона цифр после запятой. Если быть совсем точным, последовательность насчитывает 2 576 980 377 524 десятичных разрядов.

Вычисления проводились на суперкомпьютере T2K Tsukuba System, оборудованном 640 процессорами AMD Opteron с четырьмя ядрами, обеспечивающими суммарную производительность до 95 триллионов операций с плавающей запятой в секунду. На расчеты числа Пи ушло 73 часа 36 минут. Для сравнения: предыдущее рекордное вычисление длилось 600 часов.

Интересные ?-факты

Обозначение числа Пи происходит от греческого слова perijerio ("окружность"). Впервые это обозначение использовал в 1706 году английский математик У.Джонс, но общепринятым оно стало после того, как его (начиная с 1736 года) стал систематически употреблять Леонард Эйлер.

Последовательность цифр 0123456789 появляется в следующих позициях числа Пи: 17 387 594 880; 26 852 899 256; 30 243 957 439; 34 549 153 953; 41 952 536 161; 43 289 964 000.

Последовательность цифр 9876543210 появляется в следующих позициях числа Пи: 21 981 157 633; 29 832 636 867; 39 232 573 648; 42 140 457 481; 43 065 796 214.

Последовательность цифр 09876543210 - в позиции 42 321 758 803.

Последовательность цифр 27182818284 (число е) - в позиции 45 111 908 393.

Последовательность цифр 314159 вторично появляется в позиции 176451. Эта последовательность цифр появляется 7 раз в первых 10 миллионах цифр числа Пи (не считая первого появления).

В первых 200,000,000,000 десятичных знаках Пи цифры встречались с такой частотой:

Таблица.

012342000003084119999914711200001369782000006939319999921691567891999991705319999881515199999675942000029104419999869180

Выписывая последовательность натуральных чисел, составленных их цифр числа Пи, получим ряд: 3, 31, 314, 3141, 31415, 314159,… Первая тысяча элементов этого ряд содержит только 4 простых числа.

В десятичных позициях числа Пи 7, 22, 113, 355 - цифра 2. Дроби 22/7 и 355/113 - хорошие приближения к числу Пи.

Число Пи можно представить не только в десятичной форме, но и в двоичной, т.е. с использованием только двух цифр 0 и 1. 11.0010010000111111011010101000100010000101101000110000100011010011

С числом Пи в двоичном представлении можно делать интересные вещи, например, представить его в виде точек - получится сверхъестественная картина, или даже слушать это число. Так как Пи содержит бесконечное число цифр, то можно предположить, что любое сочетание цифр можно встретить в нем. В фантастической книге Карла Сагана «Контакт», в числе Пи, представленном по основанию 11 (с помощью 11 цифр) найдено сообщение от существ построивших Вселенную.

Сатана не появляется в Пи слишком быстро: первый раз '666' появляется - в позиции 2440.

Половина окружности круга с радиусом 1 - точно Пи. Площадь этого круга - также точно Пи.

Нельзя построить квадрат, равный по площади заданному кругу за конечное число шагов. Задача квадратуры круга неразрешима!

Известны еще две «классические» неразрешимые задачи: задача об удвоении куба, т.е. об определении стороны куба, объем которого вдвое больше объема заданного куба; задача о трисекции угла, т.е. о делении угла на три равные части. Как и задача о квадратуре круга, эти задачи неразрешимы при использовании только циркуля и линейки, т.е. при построении только прямых и окружностей.

В Древней Греции буква ? обозначала число 80.

Ноль не появляется в Пи до 31 цифры.

Дробь (22 / 7) - хорошее приближение к Пи. Она дает точность до 0.04025%.

Другая дробь, используемая для приближения к Пи - (355/113), она дает точность до 0.00000849%.

Ещё более точная, но менее легко запоминаемая дробь - (104348/33215) - её точность 0.00000001056%.

Первые 39 цифр числа Пи удовлетворяют всем вообразимым применениям: длина окружности вращения Вселенной может быть вычислена с точностью радиуса протона.

Многие иррациональные числа, выражающиеся формулой , где n-целое число, весьма близки к целым числам.

Например, при n=4 получим 1419434515994220370000.000000

Законодательная палата штата Индиана приняла в 1897 г. законопроект 246, в котором число Пи принято равным 3. В действительности формулировка законопроекта весьма неясна и может интерпретировать число Пи как 3.2, 4 или 9.2376. Законопроект противоречит правилам элементарной геометрии и самому себе. Рассмотрение законопроекта было отложено на неопределенный срок.

Отношение периметра основания Великой Пирамиды в Гизе к её высоте равно удвоенному значению Пи. Подобное отношение Пирамиды Солнца в Мексике равно учетверенному значению числа Пи. Обе пирамиды построены с точностью до нескольких дюймов.

Сфотографированное беспилотным космическим кораблем «Викинг» (1976 г.) геологическое образование на Марсе районе Плато Сидония, имеющее форму пирамиды, названое D&M Пирамида, повернуто на 40.868 градусов на Север Марса, что точно соответствует arctg(e/?). Другие углы D&M Пирамиды также связаны с e и Пи.

В Библии, в Третьей Книге Царств (7:23), сказано: «Он(Соломон) выстроил круглый бассейн из литого металла размерами десять мер от обода до обода (диаметр=10) и пять мер высотой. Это дало линию вокруг тридцать мер длиной (длина окружности=30)». Таким образом, в Библии, «книге данной людям Богом», число Пи равно 3, т.е. берется весьма неточно.

Однако, «мудрость Бога более велика, нежели мудрость человека». Известно, что слово "линия" на иврите, языке, на котором написана первая Библия, пишется так- ÷å Тем не менее, в приведенном отрывке слово "линия" на иврите написано с дополнительной буквой ÷åä.

Поскольку в иврите нет обозначений цифр, то для них используются буквы ÷ -100 (произносится 'каф'), å -6 ('вау'), ä -5 ('хей').

÷åä=5+6+100=111

֌=6+100=106.

На иврите слова читаются справа налево.

Отношение 111/106=1.0471698 Неверное значение Пи, приведенное в Библии =3, но 3*1.0471698=3.14150943… . Истинное значение Пи равно 3.1415926…, т.е. разность между 3*111/106 и Пи равна 0.0000832, что дает относительную ошибку 0.00026%.

Чемпионом по запоминанию цифр числа Пи является Хироиоки Готу (Hiroyoki Gotu), который помнил 42 000 цифр!

А. Айткен (A.C. Aitken) из Эдинбургского Университета мог для первых 2000 цифр числа Пи назвать цифру в любой десятичной позиции.

Если N раз выбрать два случайных числа x и y, значения которых лежат в диапазоне от -1 до 1 и подсчитать число М, когда удовлетворяется условие x2+y2<1, при стремлении N к бесконечности, ?=4M/N.

Большинство людей уверены, что круг не имеет углов, правильнее было бы сказать, что круг имеет бесконечное множество углов. Паровозное колесо - правильный 96-угольник, так как легче ковать.

Число Пи приблизительно равно (6/5)?2 ,

где ?= золотое сечение, другое интересное число, которое присутствует в природе и в искусстве.

Геометрический смысл числа ? заключается в следующем. Если отрезок прямой разделить на два отрезка А и В, то они образуют золотое сечение, если длина всего отрезка А+В находится в таком же отношении к длине А, как и длина отрезка А к В. Если В принять равным 1, то (A+1)/A=A/1 . Отсюда получается длина отрезка А и значение ?.

Золотое сечение было известно древним грекам и вряд ли можно сомневаться, что греческие архитекторы и скульпторы сознательно использовали его в своих творениях. Примером может служить, хотя бы Парфенон в Афинах.

Число ?=n sin(180/n). При n=1000 и установив режим калькулятора «Градусы», получим ?=3.1415874…. При увеличении n точность вычисления p возрастает.

Коханский нашел, что Пи является приблизительным корнем уравнения: 9х4-240х2+1492=0

В году около ?107 секунд (точно время оборота Земли вокруг Солнца 365 дней 5 часов 48 мин 46 сек=3.1556926 107 секунд, ошибка 1 день 15 час 10 мин или 0,47%).

До сих пор не доказано, что ?+е, ?/e, ln? - иррациональны.

В десятичной позиции 762 числа Пи идут четыре девятки в ряд. Эта позиция носит название позиция Фейнмана (Feynman Point)

Эдмунд Ландау после того как он в 1934 г. заявил (совершенно правильно), что ?/2 есть некоторое значение x, которое лежит в диапазоне от 1 до 2 и при котором cos(x) стремиться к нулю, был уволен нацистами за преподавание в «негерманском стиле».

Если записать заглавные буквы английского алфавита по часовой стрелке в круг и вычеркнуть буквы имеющие симметрию слева - направо: A,H,I,M,O,T,U,V,W,X,Y, то оставшиеся буквы образуют группы по 3,1,4,1,6 букв. ABCDEFGHIJKLMNOPQRSTUVWXYZ 6 3 1 4 1

С русским алфавитом так не выйдет!

В 1931 г. один предприниматель из Кливленда (США) издал книгу, в которой утверждал, что Пи точно равно 256/81.

Приведенный ниже текст замечателен тем, что количество букв в его словах цифры числа Пи: «Это я знаю и помню прекрасно, пи многие знаки мне лишни, напрасны». Подобный текст на английском в лимерике :

"Three point one four one five nine twobeen around forever - its not newappears everywherehere and in thereirrational I know but its true!"

(Три точка один четыре пять девять два

Они вокруг навсегда - это не ново.

Они появляются везде

То там, то тут.

Они иррациональны, я знаю эту истину)

Есть гипотезы, предполагающие, что в числе Пи скрыта любая информация, которая когда-либо была или будет доступна людям. В том числе и различные предсказания - надо только их найти и расшифровать, имея под рукой компьютер это не составит большого труда.

День числа Пи отмечается любителями математики 14 марта в 1:59.

Этот неофициальный праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу (Larry Shaw), который подметил, что в американской системе записи дат (месяц/число) дата 14 марта - 3/14 - и время 1:59 совпадает с первыми разрядами числа ? = 3,14159).

Обычно празднуют в 1:59 дня (в 12-часовой системе), но придерживающиеся 24-часовой системы считают, что это 13:59, и предпочитают отмечать ночью.

В это время читают хвалебные речи в честь числа Пи, его роли в жизни человечества, рисуют антиутопические картины мира без Пи, пекут и едят «пи-рог» («pie») с изображением греческой буквы «пи» или с первыми цифрами самого числа, пьют напитки и играют в игры, начинающиеся на «пи», решают математические головоломки и загадки, водят хороводы вокруг предметов, связанных с этим числом.

Празднуют и день приближённого значения Пи - 22 июля (22/7).

Примечательно, что в этот же день родился Альберт Эйнштейн - создатель теории относительности.

Хоть Пи и считается бесконечным числом, в настоящее время выявлено только 5 триллионов знаков после запятой. Человек с философским складом ума вполне имеет право спросить - "почему Пи считается бесконечным числом, коли еще не найдены все числа после запятой?" :)

Рекорд запоминания числа Пи принадлежит украинцу Андрею Слюсарчуку, который запомнил 30 миллионов (!!!) знаков числа после запятой. Поскольку простое перечисление этого заняло бы целый год, то судьи проверяли Слюсарчука следующим образом - они просили его назвать произвольные последовательности числа Пи с любого из 30 миллионов знака. Сверялся ответ по 20-томной распечатке.

В мире есть памятник числу Пи - он установлен в Сиэтле перед зданием музея искусств:

Рис.

Существуют и Пи-клубы, члены которого, являясь фанатами загадочного математического феномена, собирают все новые сведения о числе Пи и пытаются разгадать его тайну.

В 2005 году певица Кейт Буш (Kate Bush) выпустила альбом "Aerial", в котором была песня про число Пи. В песне, которую певица так и назвала - "Пи", прозвучали 124 числа из знаменитого числового ряда 3,141… Хотя Кейт Буш вряд ли примут в клуб фанатов Пи. В ее песне неправильно названо 25-е число последовательности, да и потом исчезли куда-то целых 22 числа. Во кабы продюссером этой песни был бы Андрей Слюсарчук - все могло быть иначе :)

Заключение

Из курса школьной математики мы знаем, что число Пи (греческая буква ?) - это математическая константа, выражающая отношение длины окружности к длине её диаметра. Число Пи иррационально и бесконечно. Существует масса формул, которые вычисляют эту константу, формулы эти были выведены как древними учеными, так и современными математиками.

Большинство из нас будут удивлены, узнав, сколько людей интересуется числом ?. В школе на геометрии мы уяснили, что это отношение длины окружности к диаметру, что ж тут может быть интересного? Но познакомившись поближе с этим числом, мы будем удивлены еще больше, ибо история человечества предстанет перед нами, как череда усилий величайших умов по уточнению знаков числа ? и поисков алгоритмов для этого процесса.

Изучение числа ? еще далеко незавершенный этап. И человечество ждёт многие научные открытия, связанные с этим числом.

Список литературы

.Груденов Я.И. Изучение определений, аксиом, теорем: пособие для учителей/Я.И. Груденов. М.: Просвещение, 1981. 95 с.

.Жуков А.В. Вездесущее число Либроком М: 2011

.Костовский А.Н. Геометрические построения одним циркулем/А.Н.Костовский; 3-е изд. М.: Наука, 1988. Вып. 29: Популярные лекции по математике.

.Кымпан Ф. История числа пи М.: Наука, 1971. -216 с

.Математический энциклопедический словарь/гл. ред. Ю.В.Прохоров. М.: Советская энциклопедия, 1998.

.Митропольский А.К. Краткие математические таблицы/А.К.Митропольский; ред. А.З.Рывкин. М.: ФМ, 1962. 96 с.

.Рывкин А.А. Справочник по математике/А.А.Рывкин, А.З.Рывкин, Л.С.Хренов. М.: Высшая школа, 1964. 520 с.

.Симонов Р.А. Математическая мысль древней Руси/Р.А Симонов. М.: Наука, 1977. 120 с. (История науки и техники).

.Цыпкин А.Г. Справочник по математике для средней школы/А.Г.Цыпкин; под ред. С.А.Степанова. М.: Наука, ФМ, 1980. 400 с. Чистяков В.Д. Три знаменитые задачи древности: пособие для внеклассной работы/В.Д.Чистяков. М.: Учпедгиз, 1963. 95 с.

.Шевелев И.Ш. Золотое сечение: три взгляда на природу гармонии/И.Ш.Шевелев, М.А.Марутаев, И.П.Шмелев. М.: Стройиздат, 1990. 343 с.

.Яковлев В.И. Математические начала: учеб. пособие для вузов по специальности (направлению) "Математика"/В.И.Яковлев. М.; Ижевск: НИЦ "Регулярная и хаотическая динамика", 2005. 224 с.

Приложение

Число ?

Теги: Число Пи  Курсовая работа (теория)  МатематикаПросмотров: 39969Найти в Wikkipedia статьи с фразой: Число Пи

diplomba.ru

Пи (число) - это... Что такое Пи (число)?

Иррациональные числаγ - ζ(3) — √2 — √3 — √5 — φ — α — e — π — δ
Система счисления Оценка числа
Двоичная 11,00100100001111110110…
Десятичная 3,1415926535897932384626433832795…
Шестнадцатеричная 3,243F6A8885A308D31319…
Рациональное приближение 22⁄7, 223⁄71, 355⁄113,103993/33102, …

(перечислено в порядке увеличения точности)

Непрерывная дробь [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Евклидова геометрия радиан = 180°

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первые 1000 знаков после запятой числа π[1] Если принять диаметр окружности за единицу, то длина окружности — это число «пи»

(произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра.[2] Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.

Свойства

Трансцендентность и иррациональность

  •  — иррациональное число, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n — целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа была впервые доказана Иоганном Ламбертом в 1761 году[3] году путём разложения числа в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел и .
  •  — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Транcцендентность числа была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году.[4]
  • В 1934 году Гельфонд доказал трансцендентность числа .[5] В 1996 году Юрий Нестеренко доказал, что для любого натурального n числа и алгебраически независимы, откуда, в частности, следует трансцендентность чисел и .[6][7]
  • является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли к кольцу периодов.

Соотношения

Известно много формул числа :

  • Кратные ряды :
здесь простые числа

История

Символ константы

Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.

Геометрический период

То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Ведийский текст «Шатапатха-брахмана» даёт как 339/108 ≈ 3,139.

Алгоритм Лю Хуэя для вычисления

Архимед, возможно, первым предложил математический способ вычисления . Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку и предположил, что примерно равняется 22/7 ≈ 3,142857142857143.

Чжан Хэн во II веке уточнил значение числа , предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Варахамихира в 6 веке пользуется в «Панча-сиддхантике» приближением .

Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui's π algorithm) для вычисления с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для по следующему принципу:

Позднее Лю Хуэй придумал быстрый метод вычисления и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что ≈ 355/113, и показал, что 3,1415926 < < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа в течение последующих 900 лет.

Классический период

До II тысячелетия было известно не более 10 цифр . Дальнейшие крупные достижения в изучении связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

Мадхава смог вычислить как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа , из которых 16 верные.

Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число иногда называли «лудольфовым числом», или «константой Лудольфа».

Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета:

,

найденная Франсуа Виетом в 1593 году. Другим известным результатом стала формула Валлиса:

,

выведенная Джоном Валлисом в 1655 году.

Аналогичные произведения:

Произведение, доказывающее родственную связь с числом Эйлера e :

В Новое время для вычисления используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 году Джон Мэчин (англ. John Machin)

Разложив арктангенс в ряд Тейлора

,

можно получить быстро сходящийся ряд, пригодный для вычисления числа с большой точностью.

Формулы такого типа, в настоящее время известные как формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Дазе (англ. Johann Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков .

Теоретические достижения в XVIII веке привели к постижению природы числа , чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность . В 1735 году была установлена связь между простыми числами и , когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

,

которое составляет . И Лежандр, и Эйлер предполагали, что может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Считается, что книга Уильяма Джонса «Новое введение в математику» c 1706 года первая ввела в использование греческую букву для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

Эра компьютерных вычислений

Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и другие использовали в 1949 году ЭНИАК для вычисления 2037 цифр , которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году. Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960 году быстрого преобразования Фурье, что позволило быстро осуществлять арифметические операции над очень большими числами.

В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для , некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд:

.

Братьями Чудновскими в 1987 году найдена похожая на неё:

,

которая даёт примерно по 14 цифр на каждый член ряда. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении в конце 1980-х, включая то, в результате которого в 1989 году было получено 1 011 196 691 цифр десятичного разложения. Эта формула используется в программах, вычисляющих на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент (англ. Richard P. Brent) и Юджин Саламин (англ. Eugene Salamin (mathematician)) независимо друг от друга открыли алгоритм Брента — Саламина (англ. Gauss–Legendre algorithm), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков.[9] Алгоритм состоит из установки начальных значений

и итераций:

пока an и bn не станут достаточно близки. Тогда оценка даётся формулой

При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (англ. Jonathan Borwein) Питером Боруэйном (англ. Peter Borwein).[10] При помощи этих методов Ясумаса Канада и его группа, начиная с 1980 года, установили большинство рекордов вычисления вплоть до 206 158 430 000 знаков в 1999 году. В 2002 году Канада и его группа установили новый рекорд — 1 241 100 000 000 десятичных знаков. Хотя большинство предыдущих рекордов Канады были установлены при помощи алгоритма Брента — Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти. Вычисление было выполнено на суперкомпьютере Hitachi из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

Важным развитием недавнего времени стала формула Бэйли — Боруэйна — Плаффа (англ. Bailey–Borwein–Plouffe formula), открытая в 1997 году Саймоном Плаффом (англ. Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована[11]. Эта формула,

примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа без вычисления предыдущих.[11] С 1998 до 2000 года распределённый проект PiHex использовал видоизменённую формулу ББП Фабриса Беллара для вычисления квадриллионного бита числа , который оказался нулём.[12]

В 2006 году Саймон Плафф, используя PSLQ, нашёл ряд красивых формул.[13] Пусть q = eπ, тогда

и другие вида

где q = eπ, k — нечётное число, и a, b, c — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

для рационального p у которого знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

В августе 2009 года учёные из японского университета Цукубо рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.[14]

31 декабря 2009 года французский программист Фабрис Беллар на персональном компьютере рассчитал последовательность из 2 699 999 990 000 десятичных разрядов.[15]

2 августа 2010 года американский студент Александр Йи и японский исследователь Сигэру Кондо (яп.)русск. рассчитали последовательность с точностью в 5 триллионов цифр после запятой.[16][17]

19 октября 2011 года Александр Йи и Сигэру Кондо рассчитали последовательность с точностью в 10 триллионов цифр после запятой[18][19].

Рациональные приближения

  •  — Архимед,
  •  — дана в книге индийского мыслителя и астронома Ариабхаты в V веке н. э.,
  •  — приписывается современнику Ариабхаты китайскому астроному Цзу Чунчжи.

Нерешённые проблемы

Метод иглы Бюффона

На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности.[26] Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[27]

Стихотворение для затвердевания в памяти 8-11 знаков числ π:

Чтобы нам не ошибаться,Надо правильно прочесть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Надо только постаратьсяИ запомнить всё как есть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Три, четырнадцать, пятнадцать,Девять, два, шесть, пять, три, пять.Чтоб наукой заниматься,Это каждый должен знать.

Можно просто постаратьсяИ почаще повторять:«Три, четырнадцать, пятнадцать,Девять, двадцать шесть и пять».

Запоминанию может помогать соблюдение стихотворного размера:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пятьВосемь девять, семь и девять, три два, три восемь, сорок шестьДва шесть четыре, три три восемь, три два семь девять, пять ноль дваВосемь восемь и четыре, девятнадцать, семь, один

Существуют стихи, в которых первые цифры числа π зашифрованы в виде количества букв в словах:

Это я знаю и помню прекрасно:Пи многие знаки мне лишни, напрасны.Доверимся знаньям громаднымТех, пи кто сосчитал, цифр армаду.

Раз у Коли и АриныРаспороли мы перины.Белый пух летал, кружился,Куражился, замирал,Ублажился,Нам же далГоловную боль старух.Ух, опасен пуха дух!

— Георгий Александров

Дополнительные факты

Памятник числу «пи» на ступенях перед зданием Музея искусств в Сиэтле
  • Древние египтяне и Архимед принимали величину от 3 до 3,160, арабские математики считали число .[28]
  • Неофициальный праздник «День числа пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3.14, что соответствует приближённому значению числа . Считается[29], что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта ровно в 01:59 дата и время совпадают с первыми разрядами числа Пи = 3,14159.
  • Ещё одной датой, связанной с числом , является 22 июля, которое называется «Днём приближённого числа Пи» (англ. Pi Approximation Day), так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа .
  • Мировой рекорд по запоминанию знаков числа после запятой принадлежит китайцу Лю Чао, который в 2006 году в течение 24 часов и 4 минут воспроизвёл 67 890 знаков после запятой без ошибки.[30][31] В том же 2006 году японец Акира Харагути заявил, что запомнил число до 100-тысячного знака после запятой,[32] однако проверить это официально не удалось.[33]
  • В штате Индиана (США) в 1897 году был выпущен билль (см.: en:Indiana Pi Bill), законодательно устанавливающий значение числа Пи равным 3,2.[34] Данный билль не стал законом благодаря своевременному вмешательству профессора университета Пердью, присутствовавшего в законодательном собрании штата во время рассмотрения данного закона.
  • «Число Пи для гренландских китов равно трем» написано в «Справочнике китобоя» 1960-х годов выпуска.[35]
  • По состоянию на 2010 год вычислено 5 триллионов знаков после запятой[17].
  • По состоянию на 2011 год вычислено 10 триллионов знаков после запятой[19].

В культуре

См. также

Примечания

  1. ↑ PI
  2. ↑ Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем .
  3. ↑ Lambert, Johann Heinrich. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, стр. 265–322.
  4. ↑ Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году.
  5. ↑ Weisstein, Eric W. Постоянная Гельфонда (англ.) на сайте Wolfram MathWorld.
  6. ↑ 1 2 Weisstein, Eric W. Иррациональное число (англ.) на сайте Wolfram MathWorld.
  7. ↑ Модулярные функции и вопросы трансцендентности
  8. ↑ Weisstein, Eric W. Pi Squared (англ.) на сайте Wolfram MathWorld.
  9. ↑ Brent, Richard (1975), Traub, J F, ed., "«Multiple-precision zero-finding methods and the complexity of elementary function evaluation»", Analytic Computational Complexity (New York: Academic Press): 151–176, <http://wwwmaths.anu.edu.au/~brent/pub/pub028.html>   (англ.)
  10. ↑ Jonathan M Borwein. Pi: A Source Book. — Springer, 2004. — ISBN 0387205713 (англ.)
  11. ↑ 1 2 David H. Bailey, Peter B. Borwein, Simon Plouffe. On the Rapid Computation of Various Polylogarithmic Constants // Mathematics of Computation. — 1997. — В. 218. — Т. 66. — С. 903—913. (англ.)
  12. ↑ Fabrice Bellard. A new formula to compute the nth binary digit of pi  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  13. ↑ Simon Plouffe. Indentities inspired by Ramanujan’s Notebooks (part 2)  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  14. ↑ Установлен новый рекорд точности вычисления числа π
  15. ↑ Pi Computation Record
  16. ↑ Число «Пи» рассчитано с рекордной точностью
  17. ↑ 1 2 5 Trillion Digits of Pi — New World Record (англ.)
  18. ↑ Определено 10 триллионов цифр десятичного разложения для π
  19. ↑ 1 2 Round 2… 10 Trillion Digits of Pi
  20. ↑ Weisstein, Eric W. Мера иррациональности (англ.) на сайте Wolfram MathWorld.
  21. ↑ Weisstein, Eric W. Pi (англ.) на сайте Wolfram MathWorld.
  22. ↑ en:Irrational number#Open questions
  23. ↑ Some unsolved problems in number theory
  24. ↑ Weisstein, Eric W. Трансцендентное число (англ.) на сайте Wolfram MathWorld.
  25. ↑ An introduction to irrationality and transcendence methods
  26. ↑ Обман или заблуждение? Квант № 5 1983 год
  27. ↑ Г. А. Гальперин. Биллиардная динамическая система для числа пи.
  28. ↑ Лудольфово число. Пи. Pi.
  29. ↑ Статья в Los Angeles Times «Желаете кусочек »? (название обыгрывает сходство в написании числа и слова pie (англ. пирог)) (англ.).
  30. ↑ Chinese student breaks Guiness record by reciting 67,890 digits of pi
  31. ↑ Interview with Mr. Chao Lu
  32. ↑ How can anyone remember 100,000 numbers? — The Japan Times, 17.12.2006.
  33. ↑ Pi World Ranking List
  34. ↑ The Indiana Pi Bill, 1897  (англ.)
  35. ↑ В. И. Арнольд любит приводить этот факт, см. например книгу Что такое математика (ps), стр. 9.

Литература

Ссылки

dik.academic.ru

Ответы@Mail.Ru: как получили число пи?

π (произносится «пи») — математическая константа, равная отношению длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число. Проблеме π – 4000 лет. Исследователи древних пирамид установили, что частное, полученное от деления суммы двух сторон основания на высоту пирамиды, вырабатывается числом 3,1416. В Вавилоне в V в. до н. э. пользовались числом 3,1215, а в Древней Греции числом ( ) ≈ 3,1462643. В индийских «сутрах» VI – V в. до н. э. имеются правила, из которых вытекает, что π = 3,008. Архимед (III в. до н. э.) для оценки числа π вычислял периметры вписанных и описанных многоугольников от шести до 96-ти. Такой метод вычисления длины окружности посредством периметров вписанных и описанных многоугольников применялся многими видными математиками на протяжении почти 2000 лет. В XV веке иранский математик Аль-Каши нашёл значение π с 16-ю верными знаками, рассмотрев вписанный и описанный многоугольники с 80.035.168 сторонами. А голландский вычислитель – Лудольф Ван-Цейлен (1540 – 1610), вычисляя π, дошёл до многоугольников с 602 029 сторонами, и получил 35 верных знаков для π. Учёный обнаружил большое терпение и выдержку, несколько лет затратив на определение числа π. В его честь современники назвали π – «Лудольфово число». Согласно завещанию на его надгробном камне было высечено найденное им значение π. Презентация: <a rel="nofollow" href="http://bigslide.ru/matematika/1478-eto-zagadochnoe-chislo-pi.html" target="_blank">http://bigslide.ru/matematika/1478-eto-zagadochnoe-chislo-pi.html</a> еще: <a rel="nofollow" href="http://rpp.nashaucheba.ru/docs/index-3323.html" target="_blank">http://rpp.nashaucheba.ru/docs/index-3323.html</a> <img src="//otvet.imgsmail.ru/download/875a8375f91de049494d6073098e8a2f_5f3955ee8f542146abff34aeef8eef8c.jpg" data-big="1" data-lsrc="//otvet.imgsmail.ru/download/u_f35fbfed4dca9168ef5df36f2af1baec_120x120.jpg">

Число пи - это 3,14

вот тут прочти <a rel="nofollow" href="https://ru.wikipedia.org/wiki/Пи_(число)" target="_blank">https://ru.wikipedia.org/wiki/Пи_(число)</a> интересно про пи написали

Делали, делали колеса и вдруг заметили, что если длину обода (длину окружности) разделить на длину диаметра, то получается всегда одно и то же число. Проверили на тысячи колес. БА! И правда, всегда одно и то же число, на самых разных колесиках. Удобно-то как! Задумал сделать колесо определнного диаметра и сразу можешь посчитать, какой же длины обод надо заготовить. И назвали они это постоянное число ПИ.

touch.otvet.mail.ru