Совет 2: Как найти длину диагонали параллелограмма. Как в параллелограмме найти диагонали


Как найти диагональ в параллелограмме

Вычислить диагональ параллелограмма бывает необходимо не только при подготовке домашнего задания. Это может понадобиться, например, в бумажной пластике или при создании архитектурного проекта.

Вам понадобится

ОборудованиеБумагаЛинейкаКарандашТранспортирТаблица синусов и косинусов

Математические понятия:Свойства параллелограммаСвойства высоты треугольникаИзвлечение квадратного корняТеоремы синусов и косинусов

Спонсор размещения P&G Статьи по теме "Как найти диагональ в параллелограмме" Как научиться читать по диагонали Как найти стороны прямоугольника, если известна диагональ Как найти диагональ параллелограмма, если даны стороны

Инструкция

1

Постройте параллелограмм с заданными параметрами. В условиях должны быть заданы длины сторон параллелограмма и хотя бы один угол.

2

Вспомните, чему равна сумма квадратов диагоналей параллелограмма. Она равна удвоенной сумме квадратов его сторон, которые вам известны.

3

Обозначьте параллелограмм АBCD. Стороны параллелограмма обозначьте как a и b. Диагонали обозначьте как d1 и d2. Из угла В к стороне АD опустите высоту и обозначьте точку ее пересечения со стороной AD как Е. Внутри параллелограмма у вас получился прямоугольный треугольник АВЕ.

4

Найдите высоту BЕ. Вам известен угол А и гипотенуза АВ. AE = a*sinА

5

Вычислите длину отрезка АЕ. Он равен AE=a*cosA.

6

Вычислите отрезок ЕD, который равен разности стороны AD и отрезка AE.

7

Вычислите гипотенузу прямоугольного треугольника BED, которая одновременно является диагональю d1. Она будет равна квадратному корню из суммы квадратов сторон BE и ED.

8

Найдите квадрат второй диагонали. Он будет равняться удвоенной сумме квадратов сторон минус квадрат уже известной диагонали. Извлеките квадратный корень.

Как просто

masterotvetov.com

Как найти диагональ параллелограмма, если даны стороны

Параллелограмм - это четырехугольник, противоположные стороны которого параллельны. Прямые, соединяющие его противоположные углы, называются диагоналями. Их длина зависит не только от длин сторон фигуры, но и от величин углов в вершинах этого многоугольника, поэтому без знания хотя бы одного из углов вычислить длины диагоналей можно только в исключительных случаях. Таковыми являются частные случаи параллелограмма - квадрат и прямоугольник.

Спонсор размещения P&G Статьи по теме "Как найти диагональ параллелограмма, если даны стороны" Как найти площадь основания параллелепипеда Как найти длину и ширину периметра Как найти сторону треугольника

Инструкция

1

Если длины всех сторон параллелограмма одинаковы (a), то эту фигуру можно назвать еще и квадратом. Величины всех его углов равны 90°, а длины диагоналей (L) одинаковы и могут быть рассчитаны по теореме Пифагора для прямоугольного треугольника. Умножьте длину стороны квадрата на корень из двойки - результат и будет длиной каждой из его диагоналей: L=a*v2.

2

Если о параллелограмме известно, что он является прямоугольником с указанными в условиях длиной (a) и шириной (b), то и в этом случае длины диагоналей (L) будут равны. И здесь тоже задействуйте теорему Пифагора для треугольника, в котором гипотенузой является диагональ, а катетами - две смежные стороны четырехугольника. Искомую величину рассчитайте извлечением корня из суммы возведенных в квадрат ширины и высоты прямоугольника: L=v(a?+b?).

3

Для всех остальных случаев знания одних только длин сторон хватит лишь для определения величины, включающей в себя длины сразу обеих диагоналей - сумма их квадратов по определению равна удвоенной сумме квадратов длин сторон. Если же в дополнение к длинам двух смежных сторон параллелограмма (a и b) известен еще и угол между ними (?), то это позволит рассчитать длины каждого отрезка, соединяющего противоположные углы фигуры. Длину диагонали (L?), лежащей напротив известного угла, найдите по теореме косинусов - сложите квадраты длин смежных сторон, от результата отнимите произведение этих же длин на косинус угла между ними, а из полученной величины извлеките квадратный корень: L? = v(a?+b?-2*a*b*cos(?)). Для нахождения длины другой диагонали (L?) можно воспользоваться свойством параллелограмма, приведенным в начале этого шага - удвойте сумму квадратов длин двух сторон, от результата отнимите квадрат уже рассчитанной диагонали, а из полученного значения извлеките корень. В общем виде эту формулу можно записать так: L? = v(a?+b?- L??) = v(a?+b?-(a?+b?-2*a*b*cos(?))) = v(a?+b?-a?-b?+2*a*b*cos(?)) = v(2*a*b*cos(?)). Как просто

masterotvetov.com

Как найти длину диагонали параллелограмма

Результатом соединения в четырехугольнике противоположных друг другу вершин является построение его диагоналей. Существует общая формула, связывающая длины этих отрезков с другими измерениями фигуры. По ней, в частности, можно найти длину диагонали параллелограмма.

Спонсор размещения P&G Статьи по теме "Как найти длину диагонали параллелограмма" Как найти диагональ параллелограмма, если даны стороны Как найти площадь основания параллелепипеда Как найти площадь прямоугольника

Инструкция

1

Постройте параллелограмм, выбрав при необходимости масштаб так, чтобы все известные измерения максимально соответствовали начальным данным. Хорошее понимание условий задачи и построение наглядного графика – залог быстроты решения. Помните, что в этой фигуре стороны попарно параллельны и равны.

2

Проведите обе диагонали, соединив противоположные вершины. Эти отрезки обладают несколькими свойствами: они пересекаются в середине своих длин, а любой из них делит фигуру на два симметрично одинаковых треугольника. Длины диагоналей параллелограмма связаны формулой суммы квадратов: d1? + d2? = 2•(а? + b?), где а и b – длина и ширина.

3

Очевидно, что знать только длины основных измерений параллелограмма недостаточно для того, чтобы вычислить хотя бы одну диагональ. Рассмотрим задачу, в которой заданы стороны фигуры: а = 5 и b = 9. Также известно, что одна из диагоналей больше другой в 2 раза.

4

Составьте два уравнения с двумя неизвестными: d1 = 2•d2 d1? + d2? = 2•(а? + b?) = 212.

5

Подставьте d1 из первого уравнения во второе: 5•d2? = 212 > d2 ? 6,5; Найдите длину первой диагонали: d1 = 13.

6

Частными случаями параллелограмма являются прямоугольник, квадрат и ромб. Диагонали первых двух фигур представляют собой равные отрезки, следовательно, формулу можно переписать в более простом виде: 2•d? = 2•(а? + b?) > d = v(а? + b?), где а и b – длина и ширина прямоугольника; 2•d? = 2•2•а? > d = v2•а?, где а – сторона квадрата.

7

Длины диагоналей ромба – не равные величины, однако равны его стороны. Исходя из этого, формулу тоже можно упростить: d1? + d2? = 4•а?.

8

Эти три формулы можно вывести также из отдельного рассмотрения треугольников, на которые фигуры делятся диагоналями. Они прямоугольные, значит, можно применить теорему Пифагора. Диагонали – это гипотенузы, катеты – стороны четырехугольников. Как просто

masterotvetov.com

КАК найти диагональ в параллелограмме

Вам понадобится

  • Оборудование Бумага Линейка Карандаш Транспортир Таблица синусов и косинусов Математические понятия: Свойства параллелограмма Свойства высоты треугольника Извлечение квадратного корня Теоремы синусов и косинусов

Инструкция

1

Постройте параллелограмм с заданными параметрами. В условиях должны быть заданы длины сторон параллелограмма и хотя бы один угол.

2

Вспомните, чему равна сумма квадратов диагоналей параллелограмма. Она равна удвоенной сумме квадратов его сторон, которые вам известны.

Задача № 13

Составить уравнения сторон параллелограмма, если он находится в ... Известны вершина квадрата А(3,4) и точка Р(6,5) пересечения диагоналей.http://edu.dvgups.ru/METDOC/ENF/PRMATEM/V_MATEM/METOD/SULYANDZ2/4_13.htm

3

Обозначьте параллелограмм АBCD. Стороны параллелограмма обозначьте как a и b. Диагонали обозначьте как d1 и d2. Из угла В к стороне АD опустите высоту и обозначьте точку ее пересечения со стороной AD как Е. Внутри параллелограмма у вас получился прямоугольный треугольник АВЕ.

4

Найдите высоту BЕ. Вам известен угол А и гипотенуза АВ. AE = a*sinА

5

Вычислите длину отрезка АЕ. Он равен AE=a*cosA.

6

Вычислите отрезок ЕD, который равен разности стороны AD и отрезка AE.

7

Вычислите гипотенузу прямоугольного треугольника BED, которая одновременно является диагональю d1. Она будет равна квадратному корню из суммы квадратов сторон BE и ED.

8

Найдите квадрат второй диагонали. Он будет равняться удвоенной сумме квадратов сторон минус квадрат уже известной диагонали. Извлеките квадратный корень.

Результатом соединения в четырехугольнике противоположных друг другу вершин является построение его диагоналей. Существует общая формула, связывающая длины этих отрезков с другими измерениями фигуры. По ней, в частности, можно найти длину диагонали параллелограмма.

Инструкция

1

Постройте параллелограмм, выбрав при необходимости масштаб так, чтобы все известные измерения максимально соответствовали начальным данным. Хорошее понимание условий задачи и построение наглядного графика – залог быстроты решения. Помните, что в этой фигуре стороны попарно параллельны и равны.

2

Проведите обе диагонали, соединив противоположные вершины. Эти отрезки обладают несколькими свойствами: они пересекаются в середине своих длин, а любой из них делит фигуру на два симметрично одинаковых треугольника. Длины диагоналей параллелограмма связаны формулой суммы квадратов:d1² + d2² = 2•(а² + b²), где а и b – длина и ширина.

3

Очевидно, что знать только длины основных измерений параллелограмма недостаточно для того, чтобы вычислить хотя бы одну диагональ. Рассмотрим задачу, в которой заданы стороны фигуры: а = 5 и b = 9. Также известно, что одна из диагоналей больше другой в 2 раза.

4

Составьте два уравнения с двумя неизвестными:d1 = 2•d2d1² + d2² = 2•(а² + b²) = 212.

5

Подставьте d1 из первого уравнения во второе:5•d2² = 212 → d2 ≈ 6,5;Найдите длину первой диагонали:d1 = 13.

6

Частными случаями параллелограмма являются прямоугольник, квадрат и ромб. Диагонали первых двух фигур представляют собой равные отрезки, следовательно, формулу можно переписать в более простом виде:2•d² = 2•(а² + b²) → d = √(а² + b²), где а и b – длина и ширина прямоугольника;2•d² = 2•2•а² → d = √2•а², где а – сторона квадрата.

даны уравнения двух сторон параллелограмма x + 2y + 1 = 0 (AB ...

... x + 2y + 1 = 0 (AB), 2x + y - 3 = 0 (AD) и точка пересечения его диагоналей N(1, 2). Найти уравнения двух других сторон этого параллелограмма.http://www.pm298.ru/reshenie/ljg83.php

7

Длины диагоналей ромба – не равные величины, однако равны его стороны. Исходя из этого, формулу тоже можно упростить:d1² + d2² = 4•а².

8

Эти три формулы можно вывести также из отдельного рассмотрения треугольников, на которые фигуры делятся диагоналями. Они прямоугольные, значит, можно применить теорему Пифагора. Диагонали – это гипотенузы, катеты – стороны четырехугольников.

Источники

  • диагональ параллелограмма формула

Полезен совет?

Обратите внимание

При построении параллелограмма строго следуйте заданным параметрам и пользуйтесь инструментами. При расчетах пользуйтесь таблицами синусов и косинусов.

Полезный совет

В прямоугольнике и квадрате диагонали равны. Квадрат диагонали прямоугольника равен сумме квадратов его сторон. В квадрате диагональ равна квадратному корню, извлеченному из удвоенного квадрата стороны. Диагонали ромба являются биссектрисами его углов.

Найдите сами

Как найти диагональ в параллелограмме - версия для печати

xn--b1agafe7a1ai6f.xn--p1ai

По сторонам параллелограмма найти его диагонали

Если в задаче требуется по сторонам параллелограмма найти его диагонали, следует воспользоваться свойством диагоналей параллелограмма.

Задача 1.

Диагонали параллелограмма равны 7 см и 11 см, а его стороны относятся как 6:7. Найти стороны параллелограмма.

Дано: ABCD — параллелограмм,

AC=11 см, BD=7 см,

AB:AD=6:7

 Найти: AB, AD.

Решение:

Пусть k — коэффициент пропорциональности (k>0). Тогда AB=6k см, AD=7k см.

По свойству диагоналей параллелограмма,

   

Составим уравнение и решим его:

   

   

   

   

   

Следовательно, AB=6∙1=6 см, AD=7∙1=7 см.

Ответ: 6 см, 7 см.

Задача 2.

Одна из сторон параллелограмма на 5 см больше другой, а диагонали параллелограмма равны 17 см и 19 см. Найти стороны параллелограмма.

Дано: ABCD — параллелограмм,

AC=19 см, BD=17 см,

AD на 5 см больше  AB.

 Найти: AB, AD.

Решение:

Пусть AB=x см, тогда AD=(x+5) см.

По свойству диагоналей параллелограмма,

   

Составим уравнение и решим его:

   

   

   

   

   

   

   

Второй корень не подходит по смыслу задачи.

Значит, AB=10 см, AD= 10+5=15 см.

Ответ: 10 см, 15 см.

www.treugolniki.ru

Как найти большую диагональ параллелограмма

Диагонали четырехугольника соединяют противоположные его вершины, деля фигуру на пару треугольников. Чтобы найти большую диагональ параллелограмма, нужно произвести ряд вычислений согласно начальным данным задачи.

Инструкция

  • Диагонали параллелограмма обладают рядом свойств, знание которых помогает в решении геометрических задач. В точке пересечения они делятся пополам, являясь биссектрисами пары противоположных углов фигуры, меньшая диагональ – для тупых углов, а большая – острых. Соответственно, при рассмотрении пары треугольников, которые получаются из двух смежных сторон фигуры и одной из диагоналей, половина другой диагонали – это еще и медиана.
  • Треугольники, образованные половинами диагоналей и двумя параллельными сторонами параллелограмма, подобны. Кроме того, любая диагональ делит фигуру на два одинаковых треугольника, графически симметричных относительно совместного основания.
  • Чтобы найти большую диагональ параллелограмма, можно воспользоваться общеизвестной формулой соотношения суммы квадратов двух диагоналей и удвоенной суммы квадратов длин сторон. Она является прямым следствием из свойств диагоналей:d1² + d2² = 2•(a² + b²).
  • Пусть d2 – большая диагональ, тогда формула преобразуется к виду:d2 = √(2•(a² + b²) – d1²).
  • Примените эти знания на практике. Пусть задан параллелограмм со сторонами a=3 и b=8. Найдите большую диагональ, если известно, что она на 3 см больше меньшей.
  • Решение.Запишите формулу в общем виде, введя известные из исходных данных величины a и b:d1² + d2² = 2•(9 + 64) = 146.
  • Выразите длину меньшей диагонали d1 через длину большей согласно условию задачи:d1 = d2 - 3.
  • Подставьте это выражение в первое уравнение:(d2 - 3)² + d2² = 146
  • Возведите значение в скобке в квадрат:d2² – 6•d2 + 9 + d2² = 1462•d2² – 6•d2 – 135 = 0
  • Решите полученное квадратное уравнение относительно переменной d2 через дискриминант:D = 36 + 1080 = 1116.d2 = (6 ± √1116)/4 ≈ [9,85; -6,85].Очевидно, что длина диагонали – положительная величина, следовательно, она равна 9,85 см.

completerepair.ru