Мат анализ / интегральное исчисление функций одной переменной / Неопределенный интеграл. Как решать неопределенный интеграл


Решение интегралов. Рассказываем, как решать интегралы.

Интегралы и их решение многих пугает. Давайте избавимся от страхов и узнаем, что это такое и как решать интегралы!Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое.Решение интегралов (интегрирование) есть операция обратная диференциированию.Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему.В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .

Так вот площадь закрашенной области, есть интеграл от функции в пределах от a до b. Не верится? Проверим на любой функции. Возьмем простейшую у=3. Ограничим функцию значениями а=1 и b=2. Построим: Итак ограниченная фигура прямоугольник. Площадь прямоугольника равна произведению длины на ширину. В наше случае длина 3, ширина 1, площадь 3*1=3. Попробуем решить тоже самое не прибегая к построению, используя интегрирование: Как видите ответ получился тот же. Решение интегралов – это собирание во едино каких-либо элементарных частей. В случае с площадью суммируются полоски бесконечно малой ширины. Интегралы могут быть определенными и неопределенными. Решить определенный интеграл значит найти значение функции в заданных границах. Решение неопределенного интеграла сводиться к нахождению первообразной. F(x) – первообразная. Дифференцируя первообразую, мы получим исходное подинтегральное выражение. Чтобы проверить правильно ли мы решили интеграл, мы дифференциируем полученный ответ и сравниваем с исходным выражением. Основные функции и первообразные для них приведены в таблице:

Таблица первообразных для решения интегралов

Основные приемы решения интегралов:Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду.Сначала следует запомнить основные свойства интегралов:

Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные приемы решения интегралов. Данные приемы охватывают большую часть заданий по теме нахождения интегралов.Также мы рассмотрим несколько базовых примеров решения интегралов на базе этих приемов. Важно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.

Основные приемы решения интегралов

1. Замена переменной.Для выполнения данного приема потребуется хороший навык нахождения производных.

2. Интегрирование по частям. Пользуются следующей формулой.Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.

3. Интегрирование дробно-рациональных функций. - разложить дробь на простейшие - выделить полный квадрат. - создать в числителе дифференциал знаменателя.

4. Интегрирование дробно-иррациональных функций. - выделить под корнем полный квадрат - создать в числителе дифференциал подкоренного выважения.5. Интегрирование тригонометрических функций. При интегрировании выражений видаприменяет формулы разложения для произведения.Для выражений m-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2Для выражений вида: - Применяем свойство tg2x=1/cos2x - 1

С базовыми приемами на этой всё. Теперь выведем своего рода алгоритм:Алгоритм обучения решению интегралов: 1. Разобраться в сути интегралов. Необходимо понять базовую сущность интеграла и его решения. Интеграл по сути есть сумма элементарных частей объекта интегрирования. Если речь идет об интегрирование функции, то интеграл есть площадь фигуры между графиком функции, осью х и границами интегрирования. Если интеграл неопределенный, то есть границы интегрирования не указаны, то решение сводиться к нахождению первобразной. Если интеграл определенный, то необходимо подставить значения границ в найденную функцию.2. Отработать использование таблицы первообразных и основным свойства интегралов. Необходимо научиться пользоваться таблицей первообразных. По множеству функций первообразные найдены и занесены в таблицу. Если мы имеем интеграл, которые есть в таблице, можно сказать, что он решен.3. Разобраться в приемах и наработать навыки решения интегралов.Если интеграла не табличного вида, то его решение сводиться к приведению его к виду одного из табличных интегралов. Для этого мы используем основные свойства и приемы решения. В случае, если на каких то этапах применения приемов у вас возникают трудности и непонимания, то вы более подробно разбираетесь именно по этому приему, смотрите примеры подобного плана, спрашиваете у преподавателя.Дополнительно после решения интеграла на первых этапах рекомендуется сверять решение. Для этого мы дифференциируем полученное выражение и сравниваем с исходным интегралом.Отработаем основные моменты на нескольких примерах:

Примеры решения интегралов

Пример 1:Решить интеграл:Интеграл неопределенный. Находим первообразную.Для этого интеграл суммы разложим на сумму интегралов.Каждый из интегралов табличного вида. Смотрим первообразные по таблице.Решение интеграла:Проверим решение(найдем производную):

Пример 2. Решаем интегралИнтеграл неопределенный. Находим первообразную.Сравниваем с таблицей. В таблице нет.Разложить, пользуясь свойствами, нельзя.Смотрим приемы. Наиболее подходит замена переменной.Заменяем х+5 на t5. t5 = x+5 . Получаем.Но dx нужно тоже заменить на t. x= t5 - 5, dx = (t5 - 5)’ = 5t4. Подставляем:Интеграл из таблицы. Считаем:Подставляем в ответ вместо t ,Решение интеграла:

Пример 3. Решение интеграла:Для решения в этом случае необходимо выделить полный квадрат. Выделяем:

В данном случае коэфециент ? перед интегралом получился в результате замены dx на ?*d(2x+1). Если вы найдете производные x’ = 1 и ?*(2x+1)’= 1, то поймете почему так.В результате мы привели интеграл к табличному виду.Находим первообразную.В итоге получаем:

Для закрепления темы интегралов рекомендуем также посмотреть видео.В нем мы на примере физики показываем практическое применение интегрирования, а также решаем еще несколько задач.

Надеюсь вопрос, как решать интегралы для вас прояснился. Мы дорабатываем статью по мере поступления предложений. Поэтому если у вас появились какие то предложения или вопросы по теме решения интегралов, пишите в комментариях.

Рекламная заметка: Для особо пытливых умов советуем Видео-лекции по математическому программированию. Программирование одна из дочек математики!

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Примеры решений неопределенных интегралов

  • Попробуйте решить приведенные ниже неопределенные интегралы.
  • Нажмите на изображение интеграла, и вы попадете на страницу с подробным решением.

Примеры на основные формулы и методы интегрирования

См разделОсновные формулы и методы интегрирования > > >

    Решение > > >     Решение > > >     Решение > > >     > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >

Примеры интегрирования рациональных функций (дробей)

См разделИнтегрирование рациональных функций (дробей) > > >

    > > >           > > >           > > >           > > >           > > >           > > >           > > >      

Примеры интегрирования иррациональных функций (корней)

См разделМетоды интегрирования иррациональных функций (корней) > > >

    > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >

Примеры интегрирования тригонометрических функций

См разделМетоды интегрирования тригонометрических функций > > >

    > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >      

Автор: Олег Одинцов.     Опубликовано: 21-01-2016

1cov-edu.ru

Неопределенный интеграл

Интегральное исчисление.

Первообразная функция.

Определение:ФункцияF(x) называетсяпервообразной функцией функцииf(x) на отрезке [a,b], если в любой точке этого отрезка верно равенство:

F(x) =f(x).

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) =F2(x) +C.

Неопределенный интеграл.

Определение:Неопределенным интегралом функцииf(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) +C.

Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:

1.

2.

3.

4.

5. ,

6.

Пример:

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

Для удобства значения неопределенных интегралов большинства элементарных функций собраны в специальные таблицы интегралов, которые бывают иногда весьма объемными. В них включены различные наиболее часто встречающиеся комбинации функций. Но большинство представленных в этих таблицах формул являются следствиями друг друга, поэтому ниже приведем таблицу основных интегралов, с помощью которой можно получить значения неопределенных интегралов различных функций.

Интеграл

Значение

Интеграл

Значение

1

-lncosx+C

9

ex + C

2

lnsinx+ C

10

sinx + C

3

11

-cosx + C

4

12

tgx + C

5

13

-ctgx + C

6

ln

14

arcsin+ C

7

15

8

16

Методы интегрирования.

Рассмотрим три основных метода интегрирования.

Непосредственное интегрирование.

Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцированияможно сделать вывод, что искомый интеграл равен, где С – некоторое постоянное число. Однако, с другой стороны. Таким образом, окончательно можно сделать вывод:

Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и первообразных.

Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.

Способ подстановки (замены переменных).

Теорема:Если требуется найти интеграл, но сложно отыскать первообразную, то с помощью заменыx=(t) иdx=(t)dtполучается:

Доказательство: Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла:

f(x)dx = f[(t)](t)dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Пример.Найти неопределенный интеграл.

Сделаем замену t = sinx, dt = cosxdt.

Пример.

Замена Получаем:

Ниже будут рассмотрены другие примеры применения метода подстановки для различных типов функций.

Интегрирование по частям.

Способ основан на известной формуле производной произведения:

(uv)=uv+vu

где uиv– некоторые функции от х.

В дифференциальной форме: d(uv) =udv+vdu

Проинтегрировав, получаем: , а в соответствии с приведенными выше свойствами неопределенного интеграла:

или;

Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.

Пример.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

Пример.

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако, последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.

Таким образом, интеграл найден вообще без применения таблиц интегралов.

Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Интегрирование элементарных дробей.

Определение:Элементарными называются дроби следующих четырех типов:

I. III.

II. IV.

m,n– натуральные числа (m2,n2) иb2– 4ac<0.

Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t=ax+b.

II.

Рассмотрим метод интегрирования элементарных дробей вида III.

Интеграл дроби вида IIIможет быть представлен в виде:

Здесь в общем виде показано приведение интеграла дроби вида IIIк двум табличным интегралам.

Рассмотрим применение указанной выше формулы на примерах.

Пример.

Вообще говоря, если у трехчлена ax2+bx+cвыражениеb2– 4ac>0, то дробь по определению не является элементарной, однако, тем не менее ее можно интегрировать указанным выше способом.

Пример.

Пример.

Рассмотрим теперь методы интегрирования простейших дробей IVтипа.

Сначала рассмотрим частный случай при М = 0, N= 1.

Тогда интеграл вида можно путем выделения в знаменателе полного квадрата представить в виде. Сделаем следующее преобразование:

.

Второй интеграл, входящий в это равенство, будем брать по частям.

Обозначим:

Для исходного интеграла получаем:

Полученная формула называетсярекуррентной.Если применить ееn-1 раз, то получится табличный интеграл.

Вернемся теперь к интегралу от элементарной дроби вида IVв общем случае.

В полученном равенстве первый интеграл с помощью подстановки t = u2 + sприводится к табличному, а ко второму интегралу применяется рассмотренная выше рекуррентная формула.

Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степеньюn, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

Пример:

Интегрирование рациональных функций.

Интегрирование рациональных дробей.

Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

Теорема:Если- правильная рациональная дробь, знаменательP(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде:P(x) = (x - a)…(x - b)(x2 + px + q)…(x2 + rx + s)), то эта дробь может быть разложена на элементарные по следующей схеме:

где Ai,Bi,Mi,Ni,Ri,Si– некоторые постоянные величины.

При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величинAi,Bi,Mi,Ni,Ri,Siприменяют так называемыйметод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

Применение этого метода рассмотрим на конкретном примере.

Пример.

Т.к. (, то

Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:

Итого:

Пример.

Т.к. дробь неправильная, то предварительно следует выделить у нее целую часть:

6x5– 8x4– 25x3+ 20x2– 76x– 7 3x3– 4x2– 17x+ 6

6x5– 8x4– 34x3+ 12x22x2+ 3

9x3 + 8x2 – 76x - 7

9x3 – 12x2 – 51x +18

20x2 – 25x – 25

Разложим знаменатель полученной дроби на множители. Видно, что при х = 3 знаменатель дроби превращается в ноль. Тогда:

3x3– 4x2– 17x+ 6x- 3

3x3– 9x23x2+ 5x- 2

5x2– 17x

5x2– 15x

- 2x+ 6

-2x+ 6

0

Таким образом 3x3– 4x2– 17x+ 6 = (x– 3)(3x2+ 5x– 2) = (x– 3)(x+ 2 )(3x– 1). Тогда:

Для того, чтобы избежать при нахождении неопределенных коэффициентов раскрытия скобок, группировки и решения системы уравнений (которая в некоторых случаях может оказаться достаточно большой) применяют так называемыйметод произвольных значений. Суть метода состоит в том, что в полученное выше выражение подставляются поочередно несколько (по числу неопределенных коэффициентов) произвольных значений х. Для упрощения вычислений принято в качестве произвольных значений принимать точки, при которых знаменатель дроби равен нулю, т.е. в нашем случае – 3, -2, 1/3. Получаем:

Окончательно получаем:

=

Пример.

Найдем неопределенные коэффициенты:

Тогда значение заданного интеграла:

Интегрирование некоторых тригонометрических

функций.

Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда.

Интеграл вида .

Здесь R– обозначение некоторой рациональной функции от переменныхsinxиcosx.

Интегралы этого вида вычисляются с помощью подстановки . Эта подстановка позволяет преобразовать тригонометрическую функцию в рациональную.

,

Тогда

Таким образом:

Описанное выше преобразование называетсяуниверсальной тригонометрической подстановкой.

Пример.

Несомненным достоинством этой подстановки является то, что с ее помощью всегда можно преобразовать тригонометрическую функцию в рациональную и вычислить соответствующий интеграл. К недостаткам можно отнести то, что при преобразовании может получиться достаточно сложная рациональная функция, интегрирование которой займет много времени и сил.

Однако при невозможности применить более рациональную замену переменной этот метод является единственно результативным.

Пример.

Интеграл вида если

функция R является нечетной относительно cosx.

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx.

Функция может содержатьcosxтолько в четных степенях, а, следовательно, может быть преобразована в рациональную функцию относительноsinx.

Пример.

Вообще говоря, для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.

Интеграл вида если

функция R является нечетной относительно sinx.

По аналогии с рассмотренным выше случаем делается подстановка t = cosx.

Тогда

Пример.

Интеграл вида

функция R четная относительно sinx и cosx.

Для преобразования функции Rв рациональную используется подстановка

t = tgx.

Тогда

Пример.

Интеграл произведения синусов и косинусов

различных аргументов.

В зависимости от типа произведения применятся одна из трех формул:

Пример.

Пример.

Иногда при интегрировании тригонометрических функций удобно использовать общеизвестные тригонометрические формулы для понижения порядка функций.

Пример.

Пример.

Иногда применяются некоторые нестандартные приемы.

Пример.

Итого

Интегрирование некоторых иррациональных функций.

Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.

Рассмотрим некоторые приемы для интегрирования различных типов иррациональных функций.

Интеграл вида гдеn- натуральное число.

С помощью подстановки функция рационализируется.

Тогда

Пример.

Если в состав иррациональной функции входят корни различных степеней, то в качестве новой переменной рационально взять корень степени, равной наименьшему общему кратному степеней корней, входящих в выражение.

Проиллюстрируем это на примере.

Пример.

Интегрирование биноминальных дифференциалов.

Определение:Биноминальным дифференциалом называется выражение

xm(a + bxn)pdx

где m, n,иp– рациональные числа.

Как было доказано академиком Чебышевым П.Л. (1821-1894), интеграл от биноминального дифференциала может быть выражен через элементарные функции только в следующих трех случаях:

  1. Если р– целое число, то интеграл рационализируется с помощью подстановки

, где- общий знаменательmиn.

  1. Если - целое число, то интеграл рационализируется подстановкой

studfiles.net

∫ Решение неопределённых интегралов - Калькулятор Онлайн

Введите функцию, для которой необходимо вычислить интеграл

После вычисления неопределённого интеграла, вы сможете получить бесплатно ПОДРОБНОЕ решение введённого вами интеграла.

Найдем решение неопределенного интеграла от функции f(x)(первообразную функции).

Примеры

С применением степени(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

sqrt(x)/(x + 1)

Кубический корень

cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

x*arcsin(x)

Арккосинус

x*arccos(x)

Применение логарифма

x*log(x, 10)

Натуральный логарифм

ln(x)/x

Экспонента

exp(x)*x

Тангенс

tg(x)*sin(x)

Котангенс

ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

x*arctg(x)

Арккотангенс

x*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

x^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

x^2*arctgh(x)*arcctgh(x)
Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x) Абсолютное значение x(модуль x или |x|) arccos(x) Функция - арккосинус от xarccosh(x) Арккосинус гиперболический от xarcsin(x) Арксинус от xarcsinh(x) Арксинус гиперболический от xarctg(x) Функция - арктангенс от xarctgh(x) Арктангенс гиперболический от xee число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e^x) log(x) or ln(x) Натуральный логарифм от x(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от xcos(x) Функция - Косинус от xsinh(x) Функция - Синус гиперболический от xcosh(x) Функция - Косинус гиперболический от xsqrt(x) Функция - квадратный корень из xsqr(x) или x^2 Функция - Квадрат xtg(x) Функция - Тангенс от xtgh(x) Функция - Тангенс гиперболический от xcbrt(x) Функция - кубический корень из xfloor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция - Знак xerf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа вводить в виде 7.5, не 7,52*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание

www.kontrolnaya-rabota.ru

11-а, Решение интегралов

Решение интегралов. Рассказываем, как решать интегралы.

Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое. Решение интегралов (интегрирование) есть операция обратная диференциированию. Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему. В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .

Так вот площадь закрашенной области, есть интеграл от функции в пределах от a до b. Не верится? Проверим на любой функции. Возьмем простейшую у=3. Ограничим функцию значениями а=1 и b=2. Построим:Итак ограниченная фигура прямоугольник. Площадь прямоугольника равна произведению длины на ширину. В наше случае длина 3, ширина 1, площадь 3*1=3. Попробуем решить тоже самое не прибегая к построению, используя интегрирование:Как видите ответ получился тот же. Решение интегралов – это собирание во едино каких-либо элементарных частей. В случае с площадью суммируются полоски бесконечно малой ширины. Интегралы могут быть определенными и неопределенными. Решить определенный интеграл значит найти значение функции в заданных границах. Решение неопределенного интеграла сводиться к нахождению первообразной.F(x) – первообразная. Дифференцируя первообразую, мы получим исходное подинтегральное выражение. Чтобы проверить правильно ли мы решили интеграл, мы дифференциируем полученный ответ и сравниваем с исходным выражением. Основные функции и первообразные для них приведены в таблице:

Таблица первообразных для решения интегралов

Основные приемы решения интегралов: Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду. Сначала следует запомнить основные свойства интегралов:

Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные примеры решения интегралов. Приемы будет даны для общего ознакомления без примеров решения, чтобы не перегружать статью. Нужно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.

Основные приемы решения интегралов

1. Замена переменной. Для выполнения данного приема потребуется хороший навык нахождения производных.

2. Интегрирование по частям. Пользуются следующей формулой. Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.

3. Интегрирование дробно-рациональных функций. - разложить дробь на простейшие- выделить полный квадрат.- создать в числителе дифференциал знаменателя.

4. Интегрирование дробно-иррациональных функций. - выделить под корнем полный квадрат- создать в числителе дифференциал подкоренного выважения. 5. Интегрирование тригонометрических функций.При интегрировании выражений вида применяет формулы разложения для произведения. Для выраженийm-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1 m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2 Для выражений вида: - Применяем свойство tg2x=1/cos2x – 1

1. Разобраться в сути интегралов. Необходимо понять базовую сущность интеграла и его решения. Интеграл по сути есть сумма элементарных частей объекта интегрирования. Если речь идет об интегрирование функции, то интеграл есть площадь фигуры между графиком функции, осью х и границами интегрирования. Если интеграл неопределенный, то есть границы интегрирования не указаны, то решение сводиться к нахождению первобразной. Если интеграл определенный, то необходимо подставить значения границ в найденную функцию. 2. Отработать использование таблицы первообразных и основным свойства интегралов. Необходимо научиться пользоваться таблицей первообразных. По множеству функций первообразные найдены и занесены в таблицу. Если мы имеем интеграл, которые есть в таблице, можно сказать, что он решен. 3. Разобраться в приемах и наработать навыки решения интегралов.Если интеграла не табличного вида, то его решение сводиться к приведению его к виду одного из табличных интегралов. Для этого мы используем основные свойства и приемы решения. В случае, если на каких то этапах применения приемов у вас возникают трудности и непонимания, то вы более подробно разбираетесь именно по этому приему, смотрите примеры подобного плана, спрашиваете у преподавателя. Дополнительно после решения интеграла на первых этапах рекомендуется сверять решение. Для этого мы дифференциируем полученное выражение и сравниваем с исходным интегралом. Отработаем основные моменты на нескольких примерах:

Примеры решения интегралов

Пример 1: Решить интеграл: Интеграл неопределенный. Находим первообразную. Для этого интеграл суммы разложим на сумму интегралов.Каждый из интегралов табличного вида. Смотрим первообразные по таблице. Решение интеграла:Проверим решение(найдем производную):

Пример 2. Решаем интеграл Интеграл неопределенный. Находим первообразную. Сравниваем с таблицей. В таблице нет. Разложить, пользуясь свойствами, нельзя. Смотрим приемы. Наиболее подходит замена переменной. Заменяем х+5 на t5. t5 = x+5 . Получаем. Но dx нужно тоже заменить на t. x= t5 - 5, dx = (t5 - 5)’ = 5t4. Подставляем: Интеграл из таблицы. Считаем:Подставляем в ответ вместо t ,Решение интеграла:

Пример 3. Решение интеграла: Для решения в этом случае необходимо выделить полный квадрат. Выделяем:

В данном случае коэфециент ½ перед интегралом получился в результате замены dx на ½*d(2x+1). Если вы найдете производные x’ = 1 и ½*(2x+1)’= 1, то поймете почему так. В результате мы привели интеграл к табличному виду. Находим первообразную. В итоге получаем:

studfiles.net

Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике - Элементы математического анализа

Первообразная

      Определение 1. Функцию   F (x) ,   определенную на интервале   (a, b),   называют первообразной функции   f (x) ,   определенной на интервале   (a, b),   если для каждого выполнено равенство

F' (x) = f (x) .

      Например, из справедливости равенства

(sin 2x)' = 2 cos 2x

вытекает, что функция   F (x) = sin 2x   является первообразной функции   f (x) = 2 cos 2x .

      Замечание. Функция   F (x) = sin 2x   не является единственной первообразной функции   f (x) = 2 cos 2x ,   поскольку функция   F (x) = sin 2x + 10 ,   или функция   F (x) = sin 2x – 3 ,   или функции вида   F (x) = sin 2x + c ,   где   c   – любое число, также являются первообразными функции   f (x) = 2 cos 2x .

      Справедлива следующая теорема, доказательство которой выходит за рамки школьного курса математики.

      Теорема 1. Если функция   F (x)   является первообразной функции   f (x)   на интервале   (a, b) ,   то любая другая первообразная функции   f (x)   на интервале   (a, b)   имеет вид

F (x) + с ,

где   c   – некоторое число.

Неопределенный интеграл

      Определение 2. Множество всех первообразных функции   f (x)   называют неопределенным интегралом от функции   f (x)   и обозначают

(1)

      Обозначение (1) читается так: «Неопределенный интеграл от функции   f (x)   по   dx» .

      Если   F (x)   является первообразной   f (x) ,   то в силу теоремы 1 смысл формулы (1) заключается в следующем:

(2)

      Однако для упрощения формулу (2) принято записывать в виде

(3)

подразумевая, но не указывая специально, что   c   – любое число.

      В формуле (3) функцию   f (x)   называют подынтегральной функцией, выражение   f (x) dx   нызывают подынтегральным выражением, а число   c   называют постоянной интегрирования.

      Операцию вычисления (взятия) интеграла по известной подынтегральной функции называют интегрированием функции.

Правила интегрирования. Замена переменной в неопределенном интеграле

      Вычисление интегралов (интегрирование) основано на применении следующих правил, которые непосредственно вытекают из правил вычисления производных.

      Правило 1 (интеграл от произведения числа на функцию). Справедливо равенство

где   k   – любое число.

      Другими словами, интеграл от произведения числа на функцию равен произведению этого числа на интеграл от функции.

      Правило 2 (интеграл от суммы функций). Интеграл от суммы функций вычисляется по формуле

то есть интеграл от суммы функций равен сумме интегралов от этих функций.

      Правило 3 (интеграл от разности функций). Интеграл от разности функций вычисляется по формуле

то есть интеграл от разности функций равен разности интегралов от этих функций.

      Правило 4 (интегрирование при помощи замены переменной). Из справедливости формулы

вытекает, что      

(4)

если все входящие в формулу (4) функции   f (φ (x)),   φ' (x),   F (φ (x))   определены.

      Доказательство правила 4. Воспользовавшись формулой для производной сложной функции, вычислим производную от правой части формулы (4):

      Мы получили подынтегральную функцию из левой части формулы (4), что и требовалось.

      Замечание. Рассмотрим частный случай формулы (4), когда функция   φ (x)   является линейной функцией, то есть

φ (x) = kx + b ,

что   k   и   b   – произвольные числа, .

      В этом случае

φ' (x) = k ,

и формула (4) принимает вид

(5)

      Формула (5) часто используется при решении задач.

Таблица интегралов

      Следующая таблица неопределенных интегралов составлена на основе таблицы производных часто встречающихся функций, а также на основе таблицы производных сложных функций

Основная формулаОбобщения

, где   k – любое число

где   n – любое число, не равное   – 1

,

где   n, k, b – любые числа, ,

где   n – любое число,

,   x > 0

,

где   k, b – любые числа, , kx + b > 0

где   φ (x) > 0

,

где   k, b – любые числа,

где   a – любое положительное число, не равное 1

,

где  a – любое положительное число, не равное 1,   k, b – любые числа,

,

где  a – любое положительное число, не равное 1

,

где   k, b – любые числа,

,

где   k, b – любые числа,

,

где   k, b – любые числа, ,

,

,

где   k, b – любые числа, ,

,

  | x | < 1

где   k, b – любые числа, ,| kx + b | < 1

| φ (x) | < 1

где   a, b – любые числа,

,

где   k, b – любые числа,

где   a, b – любые числа,

Основная формула:

Обобщения:

, где   k – любое число

Основная формула:

где   n – любое число, не равное   – 1 .

Обобщения:

,

где   n, k, b – любые числа, ,

_____

где   n – любое число,

Основная формула:

,   x > 0

Обобщения:

,

где   k, b – любые числа, ,   kx + b > 0

_____

где   φ (x) > 0

Основная формула:

Обобщения:

,

где   k, b – любые числа,

_____

Основная формула:

,

где   a – любое положительное число, не равное 1 .

Обобщения:

,

где  a – любое положительное число, не равное 1,   k, b – любые числа,

_____

,

где  a – любое положительное число, не равное 1

Основная формула:

Обобщения:

,

где   k, b – любые числа,

_____

Основная формула:

Обобщения:

,

где   k, b – любые числа,

_____

Основная формула:

где  

Обобщения:

,

где   k, b – любые числа, ,

_____

,

где  

Основная формула:

где  

Обобщения:

,

где   k, b – любые числа, ,

_____

,

Основная формула:

  | x | < 1

Обобщения:

где   k, b – любые числа, , | kx +b | < 1

_____

где   | φ (x) | < 1

_____

где   a, b – любые числа,

Основная формула:

Обобщения:

,

где   k, b – любые числа,

_____

_____

где   a, b – любые числа,

Примеры решения задач

      Пример 1. Вычислить интеграл

      Решение. Воспользовавшись свойствами степеней, а затем правилами интегрирования и формулами из таблицы неопределенных интегралов формулами из таблицы неопределенных интегралов, получаем

Ответ.

      Пример 2. Значение первообразной   F (x)   функции   f (x) = – 4 sin x   в точке   x = 0   равно   9.   Найти .

      Решение. Поскольку Поскольку

то

      Подставляя в формулу (6) значение   x = 0 ,   находим значение постоянной интегрирования   c:

F (0) = 4 cos 0 + c = 9,

4 + c = 9,     c = 5.

      Следовательно,

F (x) = 4 cos x + 5

      Поэтому

      Ответ.  7

      Пример 3. Найти первообразную   F (x)   функции

если   F (2π) = 2e + 3.

      Решение. Воспользовавшись формулой из таблицы неопределенных интегралов формулой из таблицы неопределенных интегралов

для функции   φ (x) = cos x ,   получаем

      Следовательно,

(7)

      Подставляя в формулу (7) значение   x = 2π,   находим значение постоянной интегрирования   c:

      Итак,

c = 3e +3 .

      Ответ. 

      Пример 4. Вычислить интеграл

      Решение. Воспользовавшись формулой из таблицы неопределенных интегралов формулой из таблицы неопределенных интегралов

для функции   φ (x) = ex,   получаем

      Ответ. 

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Неопределенный интеграл. Примеры.

Прежде, чем решать примеры на нахождение неопределенных интегралов, вспомним основные свойства  и основные формулы неопределенных интегралов и запишем все это на отдельном листе "Интегралы".

Интегралы.

Основные свойства.

I. (∫f (x) dx)'=f (x).

II. d∫f (x) dx=f (x) dx.

III. ∫dF (x)=F (x)+C  или   ∫F'(x) dx=F (x)+C.

IV. ∫kf (x) dx=k·∫f (x) dx, где k - постоянная величина, не равная нулю.

V. ∫(f (x)±g (x)) dx=∫f (x) dx±∫g (x) dx.

VI. Если F (x) есть первообразная для f (x), а k и b - постоянные величины,

причем, k≠0, то (1/k)·F (kx+b) есть первообразная для f (kx+b).

Справедливо равенство:

Даже простейшие примеры на нахождение неопределенных интегралов предполагают хорошее знание таблицы интегралов. С этого и начнем, причем, перепишем все формулы таблицы интегралов для функции u, которая зависит от х. Итак, мы будем считать, что u - не простая переменная, а функция от х, т.е.  u=φ(x), тогда нижеприведенная таблица интегралов окажется справедливой в любом случае: и если  переменная интегрирования является независимой переменной, и если переменная интегрирования есть функция от независимой переменной.

Таблица интегралов.

 3) ∫du=u+C.

 6) ∫cosudu=sinu+C.

 7) ∫sinudu=-cosu+C.

Примеры. 

Найти следующие интегралы и сделать проверку.

1) ∫(2x – 3) dx. Используем свойства V и IV, формулы 1). и 3).

(Наш лист Интегралы)

∫(2x – 3) dx = 2∫xdx - 3∫dx = 2·x²/2  – 3x + C = х2 – 3х + С.

Проверка.   F'(x) = (х2 – 3х + С)' = 2x – 3 = f (x).

2). ∫(2x – 3)2dx.  Преобразуем подынтегральную функцию по формуле ФСУ (формулы сокращенного умножения): (a – b)2 = a2 – 2ab + b2, а затем используем те же свойства и формулы, что и в примере 1).

∫(2x – 3)2dx =∫( 4x2 – 12x + 9) dx = 4∫x2dx — 12∫xdx + 9∫dx =

= 4·x³/3 — 12· x²/2 + 9x + C = ( 4/3) x3 – 6x2 + 9x + C.

Проверка.   F'(x) = ((4/3) x3 – 6x2 + 9x + C)' =(4/3)  · 3x2 — 6·2x + 9 = 4x2 – 12x + 9 = (2x – 3)2 = f (x).

Решим пример 2) вторым способом - подведения под знак дифференциала.

Итак, требуется найти  ∫(2x – 3)2dx.

Будем использовать формулу 1). Вместо u у нас (2х – 3) и, по формуле 1), переменная интегрирования должна быть такой же, как и основание степени, т. е (2х – 3). Хорошо,  вместо dx запишем d(2x – 3). И что изменилось? d (2x – 3) = 2dx, т.е. подынтегральное выражение стало больше в 2 раза. Разделим его на 2. Для этого перед значком интеграла поставим множитель ½.

Значит,∫(2x – 3)2dx = (½)∫( 2x – 3)2 d (2x – 3).     Мысленно представляйте себе u2 вместо

(2х – 3)2  и du вместо d(2x – 3). Увидели ∫u2du ?  И что получится? Верно:  u³/3+ C.

«Долго сказка сказывается…», а решаются такие примеры быстро:

∫(2x – 3)2dx =  (½)∫(2x – 3)2 d (2x – 3) =(½) ·(2x-3)³/3  + С =(1/6) · (2х – 3)3 + С.

Проверка.   (F (x)+С)′ = ( 1/6· (2х – 3)3 + С)' =  (1/6)· 3 (2x – 3)2 · 2 = (2x – 3)2 = f (x).

Сравните эти два способа решения примера 2. Что, не впечатлил второй способ? Тогда пример 3).

3) ∫(2x – 3)7dx.   Желаете возводить (2х – 3) в седьмую степень? А-а, то-то же!

Решаем способом подведения под знак дифференциала, т.е. вторым способом так же, как предыдущий пример.

∫(2x – 3)7dx =  (½)∫(2x – 3)7d (2x – 3) =  (½)· (2x – 3)8 /8 + C =(1/16) (2x – 3)8 + C.

Проверка. F'(x) = ((1/16)(2x – 3)8 + C)' =(1/16) ·8 (2x – 3)7·2 = (2x – 3)7 = f (x).

 

Запись имеет метки: примеры неопределенных интегралов

www.mathematics-repetition.com