Пи (число). Как пишется число пи


Пи (число) - это... Что такое Пи (число)?

Иррациональные числаγ - ζ(3) — √2 — √3 — √5 — φ — α — e — π — δ
Система счисления Оценка числа
Двоичная 11,00100100001111110110…
Десятичная 3,1415926535897932384626433832795…
Шестнадцатеричная 3,243F6A8885A308D31319…
Рациональное приближение 22⁄7, 223⁄71, 355⁄113,103993/33102, …

(перечислено в порядке увеличения точности)

Непрерывная дробь [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Евклидова геометрия радиан = 180°

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первые 1000 знаков после запятой числа π[1] Если принять диаметр окружности за единицу, то длина окружности — это число «пи»

(произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра.[2] Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.

Свойства

Трансцендентность и иррациональность

  •  — иррациональное число, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n — целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа была впервые доказана Иоганном Ламбертом в 1761 году[3] году путём разложения числа в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел и .
  •  — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Транcцендентность числа была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году.[4]
  • В 1934 году Гельфонд доказал трансцендентность числа .[5] В 1996 году Юрий Нестеренко доказал, что для любого натурального n числа и алгебраически независимы, откуда, в частности, следует трансцендентность чисел и .[6][7]
  • является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли к кольцу периодов.

Соотношения

Известно много формул числа :

  • Кратные ряды :
здесь простые числа

История

Символ константы

Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.

Геометрический период

То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Ведийский текст «Шатапатха-брахмана» даёт как 339/108 ≈ 3,139.

Алгоритм Лю Хуэя для вычисления

Архимед, возможно, первым предложил математический способ вычисления . Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку и предположил, что примерно равняется 22/7 ≈ 3,142857142857143.

Чжан Хэн во II веке уточнил значение числа , предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Варахамихира в 6 веке пользуется в «Панча-сиддхантике» приближением .

Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui's π algorithm) для вычисления с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для по следующему принципу:

Позднее Лю Хуэй придумал быстрый метод вычисления и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что ≈ 355/113, и показал, что 3,1415926 < < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа в течение последующих 900 лет.

Классический период

До II тысячелетия было известно не более 10 цифр . Дальнейшие крупные достижения в изучении связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

Мадхава смог вычислить как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа , из которых 16 верные.

Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число иногда называли «лудольфовым числом», или «константой Лудольфа».

Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета:

,

найденная Франсуа Виетом в 1593 году. Другим известным результатом стала формула Валлиса:

,

выведенная Джоном Валлисом в 1655 году.

Аналогичные произведения:

Произведение, доказывающее родственную связь с числом Эйлера e :

В Новое время для вычисления используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 году Джон Мэчин (англ. John Machin)

Разложив арктангенс в ряд Тейлора

,

можно получить быстро сходящийся ряд, пригодный для вычисления числа с большой точностью.

Формулы такого типа, в настоящее время известные как формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Дазе (англ. Johann Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков .

Теоретические достижения в XVIII веке привели к постижению природы числа , чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность . В 1735 году была установлена связь между простыми числами и , когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

,

которое составляет . И Лежандр, и Эйлер предполагали, что может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Считается, что книга Уильяма Джонса «Новое введение в математику» c 1706 года первая ввела в использование греческую букву для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

Эра компьютерных вычислений

Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и другие использовали в 1949 году ЭНИАК для вычисления 2037 цифр , которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году. Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960 году быстрого преобразования Фурье, что позволило быстро осуществлять арифметические операции над очень большими числами.

В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для , некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд:

.

Братьями Чудновскими в 1987 году найдена похожая на неё:

,

которая даёт примерно по 14 цифр на каждый член ряда. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении в конце 1980-х, включая то, в результате которого в 1989 году было получено 1 011 196 691 цифр десятичного разложения. Эта формула используется в программах, вычисляющих на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент (англ. Richard P. Brent) и Юджин Саламин (англ. Eugene Salamin (mathematician)) независимо друг от друга открыли алгоритм Брента — Саламина (англ. Gauss–Legendre algorithm), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков.[9] Алгоритм состоит из установки начальных значений

и итераций:

пока an и bn не станут достаточно близки. Тогда оценка даётся формулой

При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (англ. Jonathan Borwein) Питером Боруэйном (англ. Peter Borwein).[10] При помощи этих методов Ясумаса Канада и его группа, начиная с 1980 года, установили большинство рекордов вычисления вплоть до 206 158 430 000 знаков в 1999 году. В 2002 году Канада и его группа установили новый рекорд — 1 241 100 000 000 десятичных знаков. Хотя большинство предыдущих рекордов Канады были установлены при помощи алгоритма Брента — Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти. Вычисление было выполнено на суперкомпьютере Hitachi из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

Важным развитием недавнего времени стала формула Бэйли — Боруэйна — Плаффа (англ. Bailey–Borwein–Plouffe formula), открытая в 1997 году Саймоном Плаффом (англ. Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована[11]. Эта формула,

примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа без вычисления предыдущих.[11] С 1998 до 2000 года распределённый проект PiHex использовал видоизменённую формулу ББП Фабриса Беллара для вычисления квадриллионного бита числа , который оказался нулём.[12]

В 2006 году Саймон Плафф, используя PSLQ, нашёл ряд красивых формул.[13] Пусть q = eπ, тогда

и другие вида

где q = eπ, k — нечётное число, и a, b, c — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

для рационального p у которого знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

В августе 2009 года учёные из японского университета Цукубо рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.[14]

31 декабря 2009 года французский программист Фабрис Беллар на персональном компьютере рассчитал последовательность из 2 699 999 990 000 десятичных разрядов.[15]

2 августа 2010 года американский студент Александр Йи и японский исследователь Сигэру Кондо (яп.)русск. рассчитали последовательность с точностью в 5 триллионов цифр после запятой.[16][17]

19 октября 2011 года Александр Йи и Сигэру Кондо рассчитали последовательность с точностью в 10 триллионов цифр после запятой[18][19].

Рациональные приближения

  •  — Архимед,
  •  — дана в книге индийского мыслителя и астронома Ариабхаты в V веке н. э.,
  •  — приписывается современнику Ариабхаты китайскому астроному Цзу Чунчжи.

Нерешённые проблемы

Метод иглы Бюффона

На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности.[26] Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[27]

Стихотворение для затвердевания в памяти 8-11 знаков числ π:

Чтобы нам не ошибаться,Надо правильно прочесть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Надо только постаратьсяИ запомнить всё как есть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Три, четырнадцать, пятнадцать,Девять, два, шесть, пять, три, пять.Чтоб наукой заниматься,Это каждый должен знать.

Можно просто постаратьсяИ почаще повторять:«Три, четырнадцать, пятнадцать,Девять, двадцать шесть и пять».

Запоминанию может помогать соблюдение стихотворного размера:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пятьВосемь девять, семь и девять, три два, три восемь, сорок шестьДва шесть четыре, три три восемь, три два семь девять, пять ноль дваВосемь восемь и четыре, девятнадцать, семь, один

Существуют стихи, в которых первые цифры числа π зашифрованы в виде количества букв в словах:

Это я знаю и помню прекрасно:Пи многие знаки мне лишни, напрасны.Доверимся знаньям громаднымТех, пи кто сосчитал, цифр армаду.

Раз у Коли и АриныРаспороли мы перины.Белый пух летал, кружился,Куражился, замирал,Ублажился,Нам же далГоловную боль старух.Ух, опасен пуха дух!

— Георгий Александров

Дополнительные факты

Памятник числу «пи» на ступенях перед зданием Музея искусств в Сиэтле
  • Древние египтяне и Архимед принимали величину от 3 до 3,160, арабские математики считали число .[28]
  • Неофициальный праздник «День числа пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3.14, что соответствует приближённому значению числа . Считается[29], что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта ровно в 01:59 дата и время совпадают с первыми разрядами числа Пи = 3,14159.
  • Ещё одной датой, связанной с числом , является 22 июля, которое называется «Днём приближённого числа Пи» (англ. Pi Approximation Day), так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа .
  • Мировой рекорд по запоминанию знаков числа после запятой принадлежит китайцу Лю Чао, который в 2006 году в течение 24 часов и 4 минут воспроизвёл 67 890 знаков после запятой без ошибки.[30][31] В том же 2006 году японец Акира Харагути заявил, что запомнил число до 100-тысячного знака после запятой,[32] однако проверить это официально не удалось.[33]
  • В штате Индиана (США) в 1897 году был выпущен билль (см.: en:Indiana Pi Bill), законодательно устанавливающий значение числа Пи равным 3,2.[34] Данный билль не стал законом благодаря своевременному вмешательству профессора университета Пердью, присутствовавшего в законодательном собрании штата во время рассмотрения данного закона.
  • «Число Пи для гренландских китов равно трем» написано в «Справочнике китобоя» 1960-х годов выпуска.[35]
  • По состоянию на 2010 год вычислено 5 триллионов знаков после запятой[17].
  • По состоянию на 2011 год вычислено 10 триллионов знаков после запятой[19].

В культуре

См. также

Примечания

  1. ↑ PI
  2. ↑ Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем .
  3. ↑ Lambert, Johann Heinrich. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, стр. 265–322.
  4. ↑ Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году.
  5. ↑ Weisstein, Eric W. Постоянная Гельфонда (англ.) на сайте Wolfram MathWorld.
  6. ↑ 1 2 Weisstein, Eric W. Иррациональное число (англ.) на сайте Wolfram MathWorld.
  7. ↑ Модулярные функции и вопросы трансцендентности
  8. ↑ Weisstein, Eric W. Pi Squared (англ.) на сайте Wolfram MathWorld.
  9. ↑ Brent, Richard (1975), Traub, J F, ed., "«Multiple-precision zero-finding methods and the complexity of elementary function evaluation»", Analytic Computational Complexity (New York: Academic Press): 151–176, <http://wwwmaths.anu.edu.au/~brent/pub/pub028.html>   (англ.)
  10. ↑ Jonathan M Borwein. Pi: A Source Book. — Springer, 2004. — ISBN 0387205713 (англ.)
  11. ↑ 1 2 David H. Bailey, Peter B. Borwein, Simon Plouffe. On the Rapid Computation of Various Polylogarithmic Constants // Mathematics of Computation. — 1997. — В. 218. — Т. 66. — С. 903—913. (англ.)
  12. ↑ Fabrice Bellard. A new formula to compute the nth binary digit of pi  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  13. ↑ Simon Plouffe. Indentities inspired by Ramanujan’s Notebooks (part 2)  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  14. ↑ Установлен новый рекорд точности вычисления числа π
  15. ↑ Pi Computation Record
  16. ↑ Число «Пи» рассчитано с рекордной точностью
  17. ↑ 1 2 5 Trillion Digits of Pi — New World Record (англ.)
  18. ↑ Определено 10 триллионов цифр десятичного разложения для π
  19. ↑ 1 2 Round 2… 10 Trillion Digits of Pi
  20. ↑ Weisstein, Eric W. Мера иррациональности (англ.) на сайте Wolfram MathWorld.
  21. ↑ Weisstein, Eric W. Pi (англ.) на сайте Wolfram MathWorld.
  22. ↑ en:Irrational number#Open questions
  23. ↑ Some unsolved problems in number theory
  24. ↑ Weisstein, Eric W. Трансцендентное число (англ.) на сайте Wolfram MathWorld.
  25. ↑ An introduction to irrationality and transcendence methods
  26. ↑ Обман или заблуждение? Квант № 5 1983 год
  27. ↑ Г. А. Гальперин. Биллиардная динамическая система для числа пи.
  28. ↑ Лудольфово число. Пи. Pi.
  29. ↑ Статья в Los Angeles Times «Желаете кусочек »? (название обыгрывает сходство в написании числа и слова pie (англ. пирог)) (англ.).
  30. ↑ Chinese student breaks Guiness record by reciting 67,890 digits of pi
  31. ↑ Interview with Mr. Chao Lu
  32. ↑ How can anyone remember 100,000 numbers? — The Japan Times, 17.12.2006.
  33. ↑ Pi World Ranking List
  34. ↑ The Indiana Pi Bill, 1897  (англ.)
  35. ↑ В. И. Арнольд любит приводить этот факт, см. например книгу Что такое математика (ps), стр. 9.

Литература

Ссылки

dvc.academic.ru

Число пи | Математика, которая мне нравится

Лейб Штейнгарц,доктор педагогики.Иерусалим, Израильleybleyb@yahoo.com

Топ причин, почему лучше, чем .

Мы, участники международной конференции “Число Пи – самое лучшее”, не можем без равнодушия наблюдать за тем, как некоторые, так называемые любители числа , утверждают, что число лучше, чем число Пи.

Мы с этим утверждением категорически не согласны.

Поэтому формулируем свои 10 причин, которые, очевидным образом, опровергают то, что сформулировали любители числа .

1) Число по-английски произносится ПАЙ, что означает пирог. Мало того, слово ПИРОГ по-русски начинается с числа ПИ.

2) С числа ПИ начинается имя великого древнегреческого геометра ПИФАГОРА, который исследовал число ПИ.Правда, с числа начинается имя другого великого древнегреческого математика Евклида. Но он никогда не использовал в своих научных работах число .

3) С числа ПИ начинаются такие всемирно известные достопримечательности, как:ПИзанская башня.ПИрамиды.ПИтер.

4) Число ПИ можно изобразить при помощи трех спичек, а для изображения числа спичек понадобится больше.

5) и достаточно скверные числа, тогда как , а .

6) Вам вовсе не нужно знать греческий язык, чтобы использовать . Точно также, как и не нужно знать, например, еврейский язык, чтобы использовать в теории множеств букву .

7) очень часто используется не только в “детской геометрии”, но и в математическом анализе тоже.Кроме того, в математическом анализе число иногда просто подразумевается, но не пишется (в случае функции ).

А число пишется ВСЕГДА !

8 ) , тогда как  

9) — это число Эйлера, а число принадлежит всем народам и каждому человеку в отдельности!.

10) Ребенок, как правило, гораздо раньше произносит “ПИ – ПИ”, чем “е – е”.

hijos.ru

Число Пи

Изучение числа Пи начинается в начальных классах, когда школьники изучают круг, окружность и встречается значение Пи. Так как значение Пи - это константа означающая отношение длины самой окружности к длине диаметра данной окружности. К примеру если мы возьмем окружность диаметр которой будет равен одному, тогда ее длина равняется числу Пи. Данное значение Пи - бесконечно в математическом продолжении, но так же есть общепринятое обозначение. Взялось оно от упрощенного написания значения Пи, выглядит оно как 3,14.

Историческое рождение числа Пи

Корни свои число Пи предположительно получило в Древнем Египте. Так как древнеегипетские ученые вычисляли с помощью диаметра D площадь у круга, которое принимало значение D - D/92. Что соответствовало 16/92, либо 256/81, а значит число Пи равно 3,160.Индия в шестом веке до нашей эры, тоже коснулась числа Пи, в религии Джайнизма, были найдены записи в которых говорилось о том что число Пи равно 10 в квадратном корне, а значит 3,162.

Учение Архимеда об измерении круга в третьем веке до нашей эры привели его к следующим выводам:

Уже позже свои выводы он обосновывал последовательностью вычислений на примерах правильно вписанных либо описанных многоугольных форм с удвоением числа сторон данных фигур. В точных расчетах Архимед заключил соотношение диаметра и окружности в числах между 3*10/71 и 3*1/7, следовательно значение Пи равно 3,1419... Так как мы уже говорили о бесконечной форме данного значения, выглядит оно как 3,1415927... И это еще не предел, потому что математик Каши в пятнадцатом веке рассчитал значение Пи уже как шестнадцати-значную величину.Математик Англии Джонсон У. в 1706 году, начал использовать обозначение числа Пи символом ? (с греческого есть первая буква в слове окружности). Загадочное значение.

Значение Пи иррациональное, его не удается выражать в форме дроби, потому как в дроби применяются целые значения. Корнем в уравнении оно быть не может из-за чего оно так же получается трансцендентным, находится с помощью рассмотрения любых процессов, уточняясь за счет большого количества рассматриваемых шагов данного процесса. Было очень много попыток рассчитать наибольшее количество знаков в числе Пи, которые привели к десяткам триллионов цифр данного значения от запятой.

Интересный факт: У значения Пи как это ни странно есть свой праздник. Называется он международный день числа Пи. Отмечают его 14 марта. Дата появилась благодаря самому значению Пи 3,14 (мм.гг) и физику Шоу Ларри который и начал первым отмечать этот праздник уже в 1987 году.

Заметка: Юридическая помощь в получении справки об отсутствии (наличии) судимости для всех граждан РФ. Перейдите по ссылке госуслуги справка об отсутствии судимости (http://справкаосудимости.рф/) законно, быстро и без очередей!

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Пи (число) Википедия

Иррациональные числа ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — π
Система счисления Оценка числа π{\displaystyle \pi }
Десятичная 3,1415926535897932384626433832795…
Двоичная 11,00100100001111110110…
Шестнадцатеричная 3,243F6A8885A308D31319…
Шестидесятеричная 3; 08 29 44 00 47 25 53 07 …
Рациональные приближения 22⁄7, 179⁄57, 223⁄71, 333⁄106, 355⁄113, 103 993⁄33 102 (перечислено в порядке увеличения точности)
Непрерывная дробь [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Тригонометрия π{\displaystyle \pi } радиан = 180°

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первая тысяча знаков после запятой числа π[1] У этого термина существуют и другие значения, см. Пи. Если диаметр окружности равен единице, то длина окружности — это число «пи»

π{\displaystyle \pi } (произносится «пи») — математическая постоянная, равная отношению длины окружности к её диаметру[2]. Обозначается буквой греческого алфавита «π».

Свойства[

ru-wiki.ru

Число Пи

Все окружности похожи

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз.

Длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π:

C = πd.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2πR.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

    C2  
S = ,
    12  

 

где S – площадь круга, C – длина окружности (круга). Если в эту формулу подставить уже знакомые школьнику выражения площади круга S = πr2 и длины окружности С = 2 πR, то мы получим:

    (2πR)2
πR2 =
    12

, откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач.

По стопам Архимеда

- Какое из двух числе больше 22/7 или 3.14 ?- Они равны.- Почему ?- Каждое из них равно π.А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: "переложите одну спичку так, чтобы равенство стало верным".

Решение будет таковым: нужно образовать "крышу" для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π.

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют "Архимедовым" числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π.

Практическое применение

Едут двое в поезде:− Вот смотри, рельсы прямые, колеса круглые. Откуда же стук?− Как откуда? Колеса-то круглые, а площадь круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π, это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

 

 

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 πR = dR,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

 

  C   C
R= =
    d

 

Обозначения для этих формул остаются те же.

Диаметр окружности можно найти по формуле:

 

 

где  D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

 

      α
S = πR2
      360˚

 

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием "Пи". Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют "День числа Пи". К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал: Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.

 

 

Самый известный стишок для запоминания числа Пи звучит так:

Чтобы нам не ошибаться,Надо правильно прочесть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Ну и дальше надо знать,Если мы вас спросим -Это будет пять, три, пять,Восемь, девять, восемь.

(С. Бобров "Волшебный двурог")

 

Выучить значение Пи помогут стишки, в которых количество букв каждого слова последовательно совпадает с цифрой из числа Пи.

Вот несколько примеров таких стихов:

"Раз у Коли и АриныРаспороли мы перины.Белый пух летал, кружился,Куражился, замирал,Ублажился,Нам же далГоловную боль старух.Ух, опасен пуха дух!"

 

"Это я знаю и помню прекрасно,Но многие знаки мне лишни, напрасны.Доверимся знаньям громаднымТех, пи кто сосчитал, цифр армаду."

 

Другим интересным вариантом как запомнить число Пи является система «Джордано», построенная на образном воспроизведении. Изначально нужно каждой цифре присвоить образ, состоящий из пары согласных букв.

0 – НМ, 1 – ГЖ, 2 – ДТ, 3 – КХ, 4 – ЧЩ, 5 – ПБ, 6 – ШЛ, 7 – СЗ, 8 – ВФ, 9 – РЦ.

Давайте попробуем запомнить число Пи до двадцатого знака после запятой. Вот оно - 3,14159265358979323846…

Для этого сначала разобьем наши цифры на двузначные числа и запишем их в виде букв. Затем подберем слова, в которых будет по одной из букв каждой пары.

14 – ГЖ ЧЩ – ЖуЧок, 15 – ГЖ ПБ – ЖаБа, 92 – РЦ ДТ – РиТа, 65 – ШЛ ПБ – ЛиПа,  35 – КХ ПБ – КеПка, 89 – ВФ РЦ – ВеРно, 79 – СЗ РЦ – ЗаяЦ, 32 – КХ ДТ – КоТ, 38 – КХ ВФ – КоФе, 46 – ЧЩ ШЛ – ЧаШка.

Как видно, сначала идут 2 согласные, каждая их которых преобразуется в цифру, которую запоминаем.

У нас есть слова, которые нужно запомнить. Легче всего придумать из них рассказ.

"ЖуЧок и ЖаБа РиТа жили в лесу. Как-то раз под ЛиПой они нашли КеПку. ВеРно это ЗаяЦ или КоТ ее потеряли. Выпили друзья КоФе из ЧаШки и пошли искать кому принадлежит пропажа."

Остается запомнить рассказ и опорные слова. Затем перевести слова в цифры и удивить окружающих своей памятью.

 

Еще один способ выучить число Пи – это разбить цифры после запятой на группы по четыре. Специалисты в области мнемоники рекомендуют начинать запоминание с четырех групп, постепенно увеличивая нагрузку.

Для тех, кто без труда запоминает номера телефонов, можно записать число Пи в виде номеров. Это будет выглядеть так:

Анна (314) 159-26-53Борис (589) 793-23-84Владимир (626) 433-83-27Галина (950) 288-41-71 и т.д.

Лучше присваивать номерам имена по алфавиту и по возможности знакомых Вам людей. И тогда запомнить число Пи не составит труда.

Это всего лишь несколько способов как запомнить число Пи. Пробуйте, тренируйте память, возможно, Вам удастся не только выучить большое количество цифр, но и придумать свой вариант запоминания.

 

О числе Пи и рекордах его запоминания.

π - это математическая константа, которая выражает отношение длины окружности к длине ее диаметра и равна приблизительно 3,14. Именно это числовое значение мы подставляем в формулы, решая задачи по геометрии.

На самом же деле цифр после запятой значительно больше. На сегодняшний день их известно несколько триллионов, вычисленных при помощи компьютера. Люди постоянно соревнуются в их запоминании. Конечно, воспроизвести по памяти все известные цифры числа Пи не под силу ни одному человеку, но, тем не менее, есть рекордсмены, которые смогли запомнить несколько тысяч знаков.

Хидиаки Томойори из Японии воспроизвел около 40 000 цифр числа Пи. Для запоминания ему понадобилось почти 10 лет. В России Александру Беляеву удалось запомнить 2500 знаков. Это значительно меньше, но и времени он потратил всего 1,5 месяца. Какими именно способами как запомнить число Пи пользовались эти люди, история умалчивает.

 

Существует несколько способов ввода числа Пи, как с клавиатуры компьютера, так и с помощью простого копирования. Опишем, как проще всего написать число Пи.

 

 

Способ - 1.Вот символ числа Пи -π. Просто скопируйте его и вставьте в свой документ.

Способ - 2, для PC.Нажмите клавишу Alt и не отпуская ее введите код символа числа π - "960" или "227", отпустите "Alt". Клавиша Alt находится в нижней части, как правило, слева и справа от клавиши "Пробел". Цифровой код нужно вводить с помощью цифровой клавиатуры находящейся спава.

Способ - 3, для MACНажмите клавишу "Option" и не отпуская клавишу "P", появится символ числа Пи.

Способ - 4, получение числа Пи в Ворде или в другом текстовом редактореВ Word-е, в окне выбора шрифта, выберите шрифт Symbol и нажмите букву "P".

Способ - 5, таблица символов.В операционной системе Windows необходимо открыть программу "Таблица символов". Для этого воспользуйтесь меню "Пуск" - "Все программы" - "Служебные". В таблице символов выбираем нужный нам шрифт и ищем символ числа Pi в огромном многообразии различных символов.

Кстати, не со всеми шрифтами символ числа Пи будет корректно отображаться. Лучше всего для этого подходит шрифт "Times New Roman".

 

Для работы с числом Пи в Excel существует всторенная функция Пи(), которая позволяет получить число Pi с точностью до 9 знаков после запятой.

 

 

Для получения числа Пи нужно написать:

=ПИ()

Нажав клавишу ВВОД, мы получим результат 3,141592654.

У функции ПИ нет аргументов.

 

С помощью функции ПИ в Excel, зная радиус круга, можно вычислить его площадь.

Формула будет выглядеть так:

=ПИ()*(A2^2),

где A2 – это ячейка, в которую вписано значение радиуса.

 

Например, радиус круга равен 5. Записав формулу и нажав клавишу ВВОД, мы получим площадь круга, равную 78,53981634.

 

Еще одна функция, которая есть в Excel, возвращает половину числа Пи. Выглядит эта запись так:

=ПИ()/2

Нажав клавишу ВВОД, мы получим 1,570796327.

 

alekseitsarapkin-licey-1.edumsko.ru

как пишется число пи? в текстовом редакторе корень пишется как sqrt , степень как ^ , а как пишется число пи?

пиши так : 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717 76691 47303 59825 34904 28755 46873 11595 62863 88235 37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 38095 25720 10654 85863 27886 59361 53381 82796 82303 01952 03530 18529 68995 77362 25994 13891 24972 17752 83479 13151 55748 57242 45415 06959 50829 53311 68617 27855 88907 50983 81754 63746 49393 19255 06040 09277 01671 13900 98488 24012 85836 16035 63707 66010 47101 81942 95559 61989 46767 83744 94482 55379 77472 68471 04047 53464 62080 46684 25906 94912 93313 67702 89891 52104 75216 20569 66024 05803 81501 93511 25338 24300 35587 64024 74964 73263 91419 92726 04269 92279 67823 54781 63600 93417 21641 21992 45863 15030 28618 29745 55706 74983 85054 94588 58692 69956 90927 21079 75093 02955 32116 53449 87202 75596 02364 80665 49911 98818 34797 75356 63698 07426 54252 78625 51818 41757 46728 90977 77279 38000 81647 06001 61452 49192 17321 72147 72350 14144 19735 68548 16136 11573 52552 13347 57418 49468 43852 33239 07394 14333 45477 62416 86251 89835 69485 56209 92192 22184 27255 02542 56887 67179 04946 01653 46680 49886 27232 79178 60857 84383 82796 79766 81454 10095 38837 86360 95068 00642 25125 20511 73929 84896 08412 84886 26945 60424 19652 85022 21066 11863 06744 27862 20391 94945 04712 37137 86960 95636 43719 17287 46776 46575 73962 41389 08658 32645 99581 33904 78027 59009 94657 64078 95126 94683 98352 59570 98258 22620 52248 94077 26719 47826 84826 01476 99090 26401 36394 43745 53050 68203 49625 24517 49399 65143 14298 09190 65925 09372 21696 46151 57098 58387 41059 78859 59772 97549 89301 61753 92846 81382 68683 86894 27741 55991 85592 52459 53959 43104 99725 24680 84598 72736 44695 84865 38367 36222 62609 91246 08051 24388 43904 51244 13654 97627 80797 71569 14359 97700 12961 60894 41694 86855 58484 06353 42207 22258 28488 64815 84560 28506 01684 27394 52267 46767 88952 52138 52254 99546 66727 82398 64565 96116 35488 62305 77456 49803 55936 34568 17432 41125 15076 06947 94510 96596 09402 52288 79710 89314 56691 36867 22874 89405 60101 50330 86179 28680 92087 47609 17824 93858 90097 14909 67598 52613 65549 78189 31297 84821 68299 89487 22658 80485 75640 14270 47755 51323 79641 45152 37462 34364 54285 84447 95265 86782 10511 41354 73573 95231 13427 16610 21359 69536 23144 29524 84937 18711 01457 65403 59027 99344 03742 00731 05785 39062 19838 74478 08478 48968 33214 45713 86875 19435 06430 21845 31910 48481 00537 06146 80674 91927 81911 97939 95206 14196 63428 75444 06437 45123 71819 21799 98391 01591 95618 14675 14269 12397 48940 90718 64942 31961 56794 52080 95146 55022 52316 03881 93014 20937 62137 85595 66389 37787 08303 90697 92077 34672 21825 62599 66150 14215 03068 03844 77345 49202 60541 46659 25201 49744 28507 32518 66600 21324 34088 19071 04863 31734 64965 14539 05796 26856 10055 08106 И ещё 40 страниц текста)))

Кажись так: <img src="//otvet.imgsmail.ru/download/578b9da857704999f7832a4dd24292ba_i-1938.jpg" >

&#960; - вот символ

touch.otvet.mail.ru

Пи (число) - Википедия

Материал из Википедии — свободной энциклопедии

Иррациональные числаγ — ζ(3) — ρ — √2 — √3 — √5 — φ — δs — α — e — π — δ
Система счисления Оценка числа π{\displaystyle \pi }
Десятичная 3,1415926535897932384626433832795…
Двоичная 11,00100100001111110110…
Шестнадцатеричная 3,243F6A8885A308D31319…
Шестидесятеричная 3; 08 29 44 00 47 25 53 07 …
Рациональные приближения 22⁄7, 223⁄71, 333⁄106, 355⁄113, 103 993⁄33 102 (перечислено в порядке увеличения точности)
Непрерывная дробь [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Тригонометрия π{\displaystyle \pi } радиан = 180°

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первая тысяча знаков после запятой числа π[1] У этого термина существуют и другие значения, см. Пи. Если диаметр окружности равен единице, то длина окружности — это число «пи»

π{\displaystyle \pi } (произносится «пи») — математическая постоянная, равная отношению длины окружности к её диаметру[2]. Обозначается буквой греческого алфавита «π». Старое название — лудольфово число.

encyclopaedia.bid