Понятие импульса тела. Закон сохранения импульса. Как найти импульс зная скорость и массу


Импульс тела | Все формулы

Импульс тела — это физическая векторная величина, равная произведению массы тела на его скорость

Каждое тело, которое имеет массу и скорость, так же имеет и импульс.

Пусть на тело массой в течение некоторого малого промежутка времени Δt действовала сила F. Под действием этой силы скорость тела изменилась на . Следовательно, тело на промежутке Δt двигалось с ускорением

На основе Второго закон Ньютона

А если немного преобразовать, то у нас получится:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела . А физическая величина, равная произведению силы на время ее действия, называется импульсом силы .

Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с)

В Формуле мы использовали :

— Импульс тела

— Масса тела

— Скорость тела

xn--b1agsdjmeuf9e.xn--p1ai

Импульс тела. Импульс силы. Закон сохранения импульса | LAMPA

Закон сохранения импульса

Импульс вводился не случайно. Оказывается, импульс тела никуда не девается — он сохраняется. Мы предлагаем вам убедиться в этом. Рассмотрим простой случай — столкновение двух шаров.

То, что будет происходить между этими двумя шарами, можно изобразить на рисунке. При этом можно выделить три этапа:

  • ситуация "до" (до столкновения)
  • само столкновение
  • ситуация "после" (после столкновения).

"До": шары летели навстречу друг к другу; "после": шары разлетелись после столкновения; столкновение: шары действовали друг на друга.

Нам интересен момент столкновения. Первый шар действует на второй с силой F⃗21\vec{F}_{21}F⃗21​, а второй шар действует на первый с силой F⃗12\vec{F}_{12}F⃗12​. По 3-му закону Ньютона эти силы равны друг другу по модулю и противоположны по направлению:

F⃗21=−F⃗12\vec{F}_{21}=-\vec{F}_{12}F⃗21​=−F⃗12​.

Домножим это равенство на длительность столкновения Δt\Delta tΔt:

F⃗21⋅Δt=−F⃗12⋅Δt\vec{F}_{21}\cdot\Delta t=-\vec{F}_{12}\cdot\Delta tF⃗21​⋅Δt=−F⃗12​⋅Δt.

У нас получились импульсы сил, действующие на каждое из тел. Мы помним, импульс силы равен изменению импульса тела. Можем записать:

Δp⃗2=−Δp⃗1\Delta\vec{p}_2=-\Delta\vec{p}_1Δp⃗​2​=−Δp⃗​1​.

Распишем изменение импульсов тел. Буквой VVV будем обозначать скорости до столкновения, а буквой UUU — скорости после столкновения.

m2(U⃗2−V⃗2)=−m1(U⃗1−V⃗1)m_2(\vec{U}_2-\vec{V}_2)=-m_1(\vec{U}_1-\vec{V}_1)m2​(U⃗2​−V⃗2​)=−m1​(U⃗1​−V⃗1​).

Если отбросить знак "минус", то изменения импульсов тел равны друг другу. Можно заметить интересную вещь: если два тела разной массы сталкиваются, то скорость более легкого тела (с меньшей массой) в результате столкновения изменится сильнее.

Продолжаем наши преобразования:

m2U⃗2−m2V⃗2=−(m1U⃗1−m1V⃗1)m_2\vec{U}_2-m_2\vec{V}_2=-(m_1\vec{U}_1-m_1\vec{V}_1)m2​U⃗2​−m2​V⃗2​=−(m1​U⃗1​−m1​V⃗1​),

m2U⃗2−m2V⃗2=−m1U⃗1+m1V⃗1m_2\vec{U}_2-m_2\vec{V}_2=-m_1\vec{U}_1+m_1\vec{V}_1m2​U⃗2​−m2​V⃗2​=−m1​U⃗1​+m1​V⃗1​,

m2U⃗2+m1U⃗1=m2V⃗2+m1V⃗1m_2\vec{U}_2+m_1\vec{U}_1=m_2\vec{V}_2+m_1\vec{V}_1m2​U⃗2​+m1​U⃗1​=m2​V⃗2​+m1​V⃗1​.

Что получилось? Получился закон сохранения импульса.

Закон сохранения импульса. Векторная сумма импульсов тел до взаимодействия равна векторной сумме импульсов тел после взаимодействия:векторная сумма того, что было "до" = векторная сумма того, что стало "после".

Небольшое дополнение. Мы рассматривали ситуацию, в которой не было никаких внешних сил: никто "извне" не действовал на шары. Закон сохранения импульса справедлив для случая, когда внешние силы не действуют на систему тел или же действие внешних сил скомпенсировано. Такие системы тел называются замкнутыми.

Порешаем задачки.

Условие

Одинаковые шары движутся с одинаковыми по модулю скоростями в направлениях, указанных стрелками на рисунке, и абсолютно неупруго соударяются.

Как будет направлен импульс шаров после их столкновения?

  1. ↙\swarrow↙
  2. ←\leftarrow←
  3. ↓\downarrow↓
  4. ↖\nwarrow↖

(Источник: ЕГЭ-2014. Физика. Досрочный этап. Вариант 1)

Решение

Начнем с того, что поясним, что такое "неупругий удар". Неупругий удар или столкновение — это столкновение, которое приводит к "слипанию" соударяющихся тел. При неупругом ударе не выполняется закон сохранения механической энергии. Но об этом в следующих темах. В этой задаче для нас важно то, что после соударения тела будут двигаться вместе — "слипнутся".

В задаче говорится о том, что было "до", а спрашивается про то, что стало "после". Даны направления скоростей. Очень похоже на то, что это задача на закон сохранения импульса. Что мы знаем из него? Мы знаем, что в замкнутой системе тел векторная сумма импульсов тел "до" соударения равна векторной сумме импульсов тел "после":

m1U⃗1+m2U⃗2=m1V⃗1+m2V⃗2m_1\vec{U}_1+m_2\vec{U}_2=m_1\vec{V}_1+m_2\vec{V}_2m1​U⃗1​+m2​U⃗2​=m1​V⃗1​+m2​V⃗2​.

В нашем случае m1=m2=mm_1=m_2=mm1​=m2​=m, а после столкновения шары "слипаются", поэтому закон сохранения импульса примет вид

mU⃗1+mU⃗2=2mV⃗m\vec{U}_1+m\vec{U}_2=2m\vec{V}mU⃗1​+mU⃗2​=2mV⃗,

где V⃗\vec{V}V⃗ — скорость совместного движения шаров после столкновения, а U⃗1\vec{U}_1U⃗1​ и U⃗2\vec{U}_2U⃗2​ — скорости шаров до столкновения. Направление импульса шаров после столкновения, о котором спрашивается в задаче, — это направление вектора 2mV⃗2m\vec{V}2mV⃗.

Как его найти? Направление вектора в правой части равенства совпадает с направлением вектора в левой части равенства. Попробуем сложить импульсы шаров до столкновения, чтобы получить векторную сумму импульсов и определить ее направление.

Направления импульсов до столкновения нам известны (направления импульсов совпадают с направлениями скоростей, а они указаны на рисунке). Так как шары были одинаковыми и двигались с одинаковыми скоростями, модули импульсов шаров были равны. Складываем векторы импульсов по правилу параллелограмма.

Видно, что суммарный импульс направлен влево. По закону сохранения импульса в ситуации "после" суммарный импульс будет направлен точно так же. Значит, подходит ответ 2).

Ответ. 2) ←\leftarrow←

Решим еще одну задачу.

Условие

Мальчик массой 505050 кг находится на тележке массой 505050 кг, движущейся по гладкой горизонтальной дороге со скоростью 111 м/с. Каким станет модуль скорости тележки, если мальчик прыгнет с нее со скоростью 222 м/с относительно дороги в направлении, противоположном первоначальному направлению движения тележки? Ответ выразите в м/с.

(Источник: ЕГЭ-2013. Физика. Реальный экзамен)

Решение

Шаг 1. Мы думаем, что вы согласитесь с тем, что без рисунка непросто представить, что именно происходит в этой задаче. Давайте сделаем рисунок. У нас на рисунке будут изображены две ситуации: ситуация "до" и ситуация "после". На рисунке кроме самих предметов нужно также указать направление скоростей и ось, на которую мы будем проецировать эти скорости. Должно получиться что-то вроде этого:

Шаг 2. Отлично! Теперь можно записать закон сохранения импульса в векторной форме.

lampa.io

Импульс силы | Все формулы

Импульс силы — это векторная физическая величина, равная произведению силы на время её действия, мера воздействия силы на тело за данный промежуток времени.

Векторную величину Ft, равную произведению силы на время ее действия, называют импульсом силы. Векторную величину р=mv, равную произведению массы тела на его скорость, называют импульсом тела.

Формула для нахождения импульса тела вытекает из всем извесного Второго закона Ньютона

А ускорение найдем через разность скоростей на время.

Отсюда и получается, что импульс силы

Из импульса силы вытекает закон сохранения импульса

Так же есть:

Импульс тела

В Формуле мы использовали :

— Импульс силы

— Масса тела

— Сила приложенная к телу

— Время действия силы

— Конечная скорость тела

— Начальная скорость тела

xn--b1agsdjmeuf9e.xn--p1ai

Импульс тела, силы. Изменение и направление вектора, единицы измерения. Связь с законом Ньютона. Примеры

Тестирование онлайн

  • Импульс тела, импульс силы. Основные понятия

  • Импульс тела, импульс силы

Импульс тела

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.

Импульс это векторная величина, которая определяется по формуле

Импульс служит мерой того, насколько велика должна быть сила, действующая в течение определенного времени, чтобы остановить или разогнать его с места до данной скорости.

Направление вектора импульса всегда совпадает с направлением вектора скорости.

Если тело покоится, импульс равен нулю. Ненулевым импульсом обладает любое, движущееся тело. Например, когда мяч покоится, его импульс равен нулю. После удара он приобретает импульс. Импульс тела изменяется, так как изменяется скорость.

Импульс силы

Это векторная величина, которая определяется по формуле

Изменение импульса тела равно импульсу равнодействующей всех сил, действующих на тело. Это иная формулировка второго закона Ньютона

Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара - 30 м/с. Сила, с которой нога действовала на мяч - 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.

Изменение импульса тела

Как определить изменение импульса тела? Необходимо найти численное значение импульса в один момент времени, затем импульс через промежуток времени. От второй найденной величины отнять первую. Внимание! Вычитать надо вектора, а не числа. То есть из второго вектора импульса отнять первый вектор. Смотрите вычитание векторов.

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры, сила тяжести.

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;2) Направление вектора импульса; 3) Находить изменение импульса тела

Импульс силы численно равен площади фигуры под графиком F(t).

Если же сила непостоянная во времени, например линейно увеличивается F=kt, то импульс этой силы равен площади треугольника. Можно заменить эту силу такой постоянной силой, которая изменит импульс тела на ту же величину за тот же промежуток времени

Средняя равнодействующая сила

fizmat.by

Как определить импульс тела

Импульс тела иначе называется количеством движения. Оно определяется произведением массы тела на его скорость. Также его можно найти через длительность действия силы на это тело. Физический смысл имеет не сам импульс, а его изменение.

Вам понадобится

— весы;— спидометр или радар;— динамометр;— калькулятор.

Спонсор размещения P&G Статьи по теме "Как определить импульс тела" Как посчитать индекс массы тела Как найти изменение импульса Как определить массу Земли

Инструкция

1

Определите массу тела с помощью весов в килограммах. Измерьте его скорость. Сделайте это при помощи спидометра или специального радара в метрах в секунду. Вычислите импульс тела p как произведение его массы m на скорость v (p=m•v). Например, если скорость тела равна 5 м/с, а его масса 2 кг, то импульс равен p=2•5=10 кг•м/с.

2

Важнее умение находить изменение импульса тела, поскольку импульс является характеристикой удара, при котором эта величина изменяется. Для того чтобы найти изменение импульса тела, отнимите от конечного импульса начальный, учитывая при этом, что величина это векторная. Таким образом, изменение импульса тел равно вектору ?p, который является разностью векторов p2 (конечного импульса) и p1 (начального импульса).

3

Если при движении тело не меняет направления, то для того, чтобы найти изменение импульса, отнимите от конечной скорости начальную и умножьте ее на массу тела. Например, если автомобиль, двигаясь прямолинейно, увеличил скорость с 20 до 25 м/с, а его масса равна 1200 кг, но изменение его импульса составит ?p=1200•(25-20)=6000 кг•м/с. Если скорость тела уменьшается, то изменение его импульса будет отрицательным.

4

Если тело меняет направление, ищите разность векторов p2 и p1, используя теорему косинусов или другие соотношения.

5

Пример. Мяч массой 500 г упруго ударил в гладкую стену под углом 60? к вертикали, а его скорость была при этом 3 м/с, найдите изменение его импульса.

Поскольку удар упругий, то мяч отлетит от гладкой стены тоже под углом 60?, с той же по модулю скоростью, 3 м/с. Для того чтобы перевести разность в сумму, умножьте значение вектора p1 на -1. Получите, что ?p равно сумме векторов p2 и –p1. Применив правило треугольника, вычислите ?p=v((0,5•3)?+ (0,5•3)?-2•(0,5•3)•(0,5•3)•cos(60?))=0,5•3=1,5 кг•м/с. Примечательно то, что модуль начального и конечного импульса в этом случае тоже по 1,5 кг•м/с.

6

Если известна сила, действующая на тело, которая и является причиной изменения его скорости и длительность ее действия, то рассчитайте изменение импульса как произведение силы F на время ее действия ?t (?p=F•?t). Силу измерьте при помощи динамометра. Например, если футболист ударил мяч с силой 400 Н, а время соударения равно 0,2 с, то изменение импульса мяча составит ?p=400•0,2=8000 кг•м/с. Как просто

masterotvetov.com

Импульс тела: закон сохранения импульса: понятия и формулы

 

Проделаем несколько несложных преобразований с формулами. По второму закону Ньютона силу можно найти: F=m*a. Ускорение находится следующим образом: a=v⁄t . Таким образом получаем: F=m*v/t.

Определение импульса тела: формула

Выходит, что сила характеризуется изменением произведения массы на скорость во времени. Если обозначить это произведение некой величиной, то мы получим изменение этой величины во времени как характеристику силы. Эту величину назвали импульсом тела. Импульс тела выражается формулой:

p=m*v ,

где p импульс тела, m масса, v скорость.

Импульс это векторная величина, при этом его направление всегда совпадает с направлением скорости. Единицей импульса является килограмм на метр в секунду (1 кг*м/с).

Что же такое импульс тела: как понять?

Попробуем по-простому, «на пальцах» разобраться, что такое импульс тела. Если тело покоится, то его импульс равен нулю. Логично. Если скорость тела изменяется, то у тела появляется некий импульс, который характеризует величину приложенной к нему силы.

Если воздействие на тело отсутствует, но оно движется с некоторой скоростью, то есть имеет некий импульс, то его импульс означает, какое воздействие способно оказать данное тело при взаимодействии с другим телом.

В формулу импульса входит масса тела и его скорость. То есть чем большей массой и/или скоростью обладает тело, тем большее воздействие оно может оказать. Это понятно и из жизненного опыта.

Чтобы сдвинуть тело небольшой массы, нужна небольшая сила. Чем больше масса тела, тем большее придется приложить усилие. То же самое касается и скорости, которую сообщают телу. В случае же воздействия самого тела на другое, импульс также показывает величину, с которой тело способно действовать на другие тела. Эта величина напрямую зависит от скорости и массы исходного тела.

Импульс при взаимодействии тел

Возникает еще один вопрос: что произойдет с импульсом тела при его взаимодействии с другим телом? Масса тела измениться не может, если оно остается целым, а вот скорость может измениться запросто. При этом скорость тела изменится в зависимости от его массы.

В самом деле, понятно, что при столкновении тел с очень разными массами, скорость их изменится по-разному. Если летящий на большой скорости футбольный мяч врежется в неготового к этому человека, например зрителя, то зритель может упасть, то есть приобретет некоторую небольшую скорость, но точно не полетит как мячик.

А все потому, что масса зрителя намного больше массы мяча. Но при этом сохранится неизменным общий импульс этих двух тел. 

Закон сохранения импульса: формула

В этом и заключается закон сохранения импульса: при взаимодействии двух тел их общий импульс остается неизменным. Закон сохранения импульса действует только в замкнутой системе, то есть в такой системе, в которой нет воздействия внешних сил или их суммарное действие равно нулю.

В реальности практически всегда на систему тел оказывается стороннее воздействие, но общий импульс, как и энергия, не пропадает в никуда и не возникает из ниоткуда, он распределяется между всеми участниками взаимодействия. 

Закон сохранения импульса для двух тел в виде формулы будет выглядеть следующим образом:

(p_1' ) +(p_2' ) = (p_1 ) + (p_2 ),

где левая часть уравнения это сумма импульсов тел после взаимодействия, а правая часть после взаимодействия. Уравнение говорит нам, что общий импульс (сумма импульсов) остается неизменнным.

Нужна помощь в учебе?

Предыдущая тема: Искусственные спутники Земли: первая и вторая космическая скорость Следующая тема:&nbsp&nbsp&nbspРеактивное движение или как летит ракета в космосе?

Все неприличные комментарии будут удаляться.

www.nado5.ru

Импульс тела и закон сохранения импульса

ОПРЕДЕЛЕНИЕ

Единица измерения импульса в системе СИ: кг • м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

   

ОПРЕДЕЛЕНИЕ

Импульс силы – это величина, равная произведению силы на время ее действия, т.е. величина .

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, силы трения, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

  • изменение импульса системы тел равно векторной сумме импульсов всех внешних сил, действующих на систему:

       

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

  • импульс замкнутой системы есть величина постоянная:

       

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие «ускорения». Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1
Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

   

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

   

откуда скорость вагона после попадания в него снаряда:

   

Переводим единицы в систему СИ: т кг.

км/ч м/с

Вычислим:

   

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.
ПРИМЕР 2
Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая часть массой m1=3 кг получила скорость v1=400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

   

или

   

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для скалярного произведения векторов:

   

Учитывая, что , а также что , находим скорость второго осколка:

   

Подставив в полученную формулу численные значения физических величин, вычислим:

   

Направление полета большей части снаряда определим, воспользовавшись теоремой синусов:

   

откуда

   

Подставив в формулу численные значения, получим:

   

   

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.
ПРИМЕР 3
Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть сила тяги паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует сила трения (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

   

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»:

   

или

   

На горизонтальном участке сила трения:

   

поэтому можно записать:

   

откуда находим силу тяги паровоза:

   

   

   

Переводим единицы в систему СИ: т кг.

км/ч м/с

мин с

Ускорение свободного падения м/с .

Вычислим:

   

Ответ Сила тяги паровоза должна составлять Н.

ru.solverbook.com