Пределы. Понятие пределов. Вычисление пределов. Функции пределы как решать


Как решать пределы для чайников, примеры решений

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что "скучная теория" должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) ; б)
Решение

а)

б)

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Ответ
Пример 2
Решение

Внимание "чайникам" :) Чтобы вычислить предел любого типа и вида нужно подставить значение x, указанное под пределом, в функцию, стоящую под знаком предела. Давайте попробуем это сделать:

Как видим в итоге у нас вычислился предел, результатом стала двойка. Хорошо, когда так получается, но бывает так, что результатом становятся неопределенности. Попробуем разобраться с ними - это не так страшно как кажется :)

Ответ

Что делать с неопределенностью вида:

Пример 3
Решить
Решение

Как всегда начинаем с подстановки значения в выражение, стоящее под знаком предела. 

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи . Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель

Продолжаем решать учитывая вышеприведенное преобразование:

Ответ
Пример 4
Решение

Бесконечность получилась в результате - это следует из примера 1. Когда число делится на 0 под знаком предела, то получается бесконечность.

Ответ

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность:

Пример 5
Вычислить
Решение

Что же делать? Как быть? Не стоит паниковать, потому что невозможное - возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем...

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

Ответ
Пример 6
Решение

Чтобы устранить такую неопределенность нужно вынести за скобки икс в числителе и в знаменателе, далее их сократить. В полученное выражение подставить икс равное бесконечности. Пробуем...

Ответ

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: "ноль делить на ноль" или "бесконечность делить на бесконечность" и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность "ноль делить на ноль" нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность "бесконечность делить на бесконечность", тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

xn--24-6kcaa2awqnc8dd.xn--p1ai

Предел функции. Устранение неопределенности. Примеры.

В этой статье введем определение предела, познакомимся с различными видами неопределенностей и способами их устранения. Рассмотрим также большое количество примеров с объяснениями.

Предел функции по Коши. Значение называется пределом функции в точке , если для любого наперед взятого положительного числа найдется отвечающее ему положительное число такое, что для всех аргументов , удовлетворяющих условию , выполнялось равенство .

   

Число из этого определения будем называть предельным значением . Вычисление любого предела необходимо начинать с подстановки предельного значения в имеющееся выражение. При этом можно получить либо некоторое число (а также бесконечность), либо какую-то неопределенность. В случае получения числа или бесконечности сразу переходим к записи ответа — это самые простые задачи.

Примеры 1-5. Найти следующие пределы:

   

Решение:   Подставляем предельное значение .

   

Ответ:  

   

Решение:   Подставляем предельное значение .

   

Ответ:  

   

Решение:   Подставляем предельное значение .

   

Ответ:  

   

Решение:   Подставляем предельное значение .

   

Ответ:  

   

Решение:   Подставляем предельное значение .

   

Такой ответ получаем в связи с тем, что основание степени больше единицы. Если бы основание было меньше единицы, например , то предел бы равнялся нулю.

Ответ:  

[свернуть]

Как видно, для решения этих пяти примеров нам не потребовалось применение каких-то особых приемов. Однако чаще всего так просто справиться с пределом не получится. Далее будет рассматривать случаи, когда при подстановке предельного значения получаются неопределенности вида , , .

Неопределенность вида  

Чтобы раскрыть неопределенность в алгебраическом выражении, надо в числителе и знаменателе выделить множитель , который стремится к нулю, и на него под знаком предела сократить.

Очевидно, что если при подстановке в многочлен предельного значения этот многочлен обращается в , то является его корнем. А это значит, что данный многочлен без остатка можно разделить на .

Пример 6. Вычислить предел

   

Решение:   Подставляем предельное значение .

   

Получили неопределенность вида . Найдем корни многочленов из числителя и знаменателя (решаем два квадратных уравнения).

;    

;    

Тогда данные многочлены будут разложены на множители следующим образом:

  и   .

Переписываем предел, используя полученные разложения, и сокращаем числитель и знаменатель на :

   

Теперь снова подставляем предельное значение :

   

Ответ:  

[свернуть]

Пример 7. Вычислить предел

   

Решение:   Подставляем предельное значение .

   

Получили неопределенность вида . Необходимо выделить из числителя и знаменателя множитель . Для этого достаточно заметить, что числитель представляет собой разность кубов, а знаменатель — разность квадратов. То есть

  и   .

Переписываем предел, используя полученные разложения, и сокращаем числитель и знаменатель на :

   

Теперь снова подставляем предельное значение :

   

Ответ:  

[свернуть]

Не всегда можно разложить на множители многочлен так, как это сделано в 6м и 7м примерах. Если он имеет степень больше двух (и сгруппировать не удаётся), следует разделить его столбиком на . Это долго, но действенно — ответ гарантирован, главное не просчитаться 🙂

Пример 8. Вычислить предел

   

Решение:   Подставляем предельное значение .

   

Получили неопределенность вида . Разделим столбиком числитель и знаменатель на :

В обоих случаях остаток при делении равен нулю, всё хорошо (если остаток получился НЕ ноль, проверяйте решение, ищите ошибку!). Многочлены будут расписаны на множители следующим образом:

    и     .

Переписываем предел, используя полученные разложения, и сокращаем числитель и знаменатель на :

   

Теперь снова подставляем предельное значение :

   

Ответ:  

[свернуть]

Пример 9. Вычислить предел

   

Решение:   И вновь первым делом подставляем предельное значение

   

Получили неопределенность вида . Разделим столбиком числитель и знаменатель на :

Тогда многочлены будут разложены на множители так:

    и     .

Переписываем предел с данными преобразованиями, производим сокращение и подставляем предельное значение :

   

Получили ту же самую неопределенность. Поэтому опять выделяем из числителя и знаменателя множитель и производим на него сокращение. Для этого решаем два квадратных уравнения.

;    

;    

Отсюда можем записать, что  ,  а  . Дальше работаем с пределом:

   

Ответ:  

[свернуть]

В 9м примере оказалось недостаточным произвести одно сокращение. Так бывает в тех случаях, когда предельное значение является для многочленов корнем кратности больше единицы (в нашем случае    имел кратность 2).

Пусть теперь вместо многочлена в числителе или знаменателе будет иррациональное выражение.

Если в числителе или знаменателе стоят иррациональные выражения, то для получения сомножителя    умножим числитель и знаменатель на сопряженные им выражения.

Пример 10. Вычислить предел

   

Решение:   Подставляем предельное значение  .

   

Получили неопределенность вида . И в числителе, и в знаменателе стоят иррациональные выражения, поэтому будем делить и умножать на сопряженное к каждому. При этом понятно, что если была сумма, то сопряженное — разность, и если была разность, то сопряженное — сумма. То есть сопряженное к числителю , к знаменателю .

   

   

После умножения и деления на сопряженное, использовали формулу разности квадратов. Теперь осталось лишь еще раз подставить предельное значение  :

   

Ответ:   3

[свернуть]

Пример 11. Вычислить предел

   

Решение:   При подстановке предельного значения получаем неопределенность  . Здесь  в числителе алгебраическое выражение, а в знаменателе иррациональное. Поэтому для избавления от неопределенности следует выделить из числителя множитель и умножить и разделить на сопряженное к знаменателю.

Итак, разбиваем на множители числитель. Это квадратный многочлен, поэтому удобно будет просто решить квадратное уравнение.

;    

И, получаем,   .

   

   

   

   

higher-math.ru

Что такое предел функции как его найти

Обобщённое понятие предела: число a есть предел некоторой переменной величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a.

Поясним это на примере, который также проиллюстрируем. А после примера приведём общий алгоритм решения пределов.

Запишем приведённый пример на языке формул. Итак, номер окружности возрастает и стремится к бесконечности, то есть . Допустим, существует такой равнобедренный треугольник, что длина диаметра каждой вписанной в него окружности расчитывается по формуле

Величина, которую нам требуется найти, будет записана так:

Lim это и есть предел, а под ним указывается переменная, которая стремится к определённому значению – нулю, любому другому числу, бесконечности.

Теперь вычислим предел, присвоив переменной x значение бесконечность (в более строгом определении это называется "доопределить функцию", с этим определением вы можете ознакомиться в последующих частях главы "Предел"). Примем, что конечная величина, поделенная на бесконечность, равна нулю:

С рассмотренной последовательностью окружностей свяжем другую переменную величину - последовательность сумм их диаметров:

Рассмотрев рисунок снова, обнаружим, что предел последовательности равен h – высоте равнобедренного треугольника. Вообще, предел может быть равен нулю, любому другому числу или бесконечности.

Теперь более строгие определения предела функции, которые Вас могут спросить на экзамене, и для понимания которых потребуется чуть больше внимания.

Предел функции при

Пусть функция f(x) определена на некотором множестве X и пусть дана точка . Возьмём из X последовательность точек, отличных от :

   (1)

сходящуюся к . Значения функции в точках этой последовательности также образуют числовую последовательность

   (2)

и можно ставить вопрос о существовании её предела.

Это означает: чтобы найти предел функции, нужно в функцию вместо x подставить то значение, к которому стремится x.

Пример 1. Найти предел функции при .

Решение. Подставляем вместо x значение 0. Получаем:

.

Итак, предел данной функции при равен 1.

Предел функции при , при и при

Кроме рассмотренного понятия предела функции при существует также понятие предела функции при стремлении аргумента к бесконечности.

Определение 2. Число A называется пределом функции f(x) при , если для любой бесконечно большой последовательности (1) значений аргумента соответствующая последовательность (2) значений функции сходится к A.

Символически это записывается так: .

Определение 3. Число A называется пределом функции f(x) при (), если для любой бесконечно большой последовательности значений аргумента, элементы которой положительны (отрицательны), соответствующая последовательность (2) значений функции сходится к A.

Символически это записывается так: ().

Это, как и в случае определения 1, означает: чтобы найти предел функции, нужно в функцию вместо x подставить бесконечность, плюс бесконечность или минус бесконечность.

Пример 2. Найти предел функции при .

Решение. Подставляем вместо x бесконечность. Получаем, что последовательность значений функции является бесконечно малой величиной и поэтому имеет предел, равный нулю:

.

Для наглядности и убедительности, решая данный пример в черновике, можете подставить вместо x супербольшое число. При делении получите супермалое число.

Теорема 1. (о единственности предела функции). Функция не может иметь более одного предела.

Следствие. Если две функции f(x) и g(x) равны в некоторой окрестности точки , за исключением, может быть, самой точки , то либо они имеют один и тот же предел при , либо обе не имеют предела в этой точке.

Теорема 2. Если функции f(x) и  g(x) имеют пределы в точке , то:

1) предел алгебраической суммы функций равен алгебраической сумме пределов слагаемых, т.е.

         (3)

2) предел произведения функций равен произведению пределов сомножителей, т.е.

            (4)

3)предел частного двух функций равен частному от деления предела делимого на предел делителя, если предел делителя не равен нулю, т.е.

           (5)

Замечание. Формулы (3) и (4) справедливы для любого конечного числа функций.

Следствие 1. Предел постоянной равен самой постоянной, т.е.

Следствие 2. Постоянный множитель можно выносить за знак предела, т.е.

Пример 3. Найти предел:

Решение.

 

Пример 4. Найти предел:

Решение. Предварительно убедимся, что предел делителя не равен нулю:

Таким образом, формула (5) применима и, значит,

Теорема 3 (о пределе сложной функции). Если существует конечный предел

а функция f(u) непрерывна в точке , то

Другими словами, для непрерывных функций символы предела и функции можно поменять местами.

Непосредственное применение теорем о пределах, однако, не всегда приводит к цели. Например, нельзя применить теорему о пределе частного, если предел делителя равен нулю. В таких случаях необходимо предварительно тождественно преобразовать функцию, чтобы иметь возможность применить следствие из теоремы 1.

Пример 5. Найти предел:

Решение. Теорема о пределе частного здесь неприменима, так как

Преобразуем заданную дробь, разложив числитель и знаменатель на множители. В числителе получим

где

 

корни квадратного трёхчлена (если Вы забыли, как решать квадратные уравнения, то Вам сюда). Теперь сократим дробь и, используя следствие из теоремы 1, вычислим предел данной функции:

При решении примеров 5 и 8 нам уже встретилась неопределённость вида . Эта неопределённость и неопределённость вида - самые распространённые неопределённости, которые требуется раскрывать при решении пределов.

БОльшая часть задач на пределы, попадающихся студентам, как раз несут в себе такие неопределённости. Для их раскрытия или, точнее, ухода от неопределённостей существует несколько искусственных приёмов преобразования вида выражения под знаком предела. Эти приёмы следующие: почленное деление числителя и знаменателя на старшую степень переменной, домножение на сопряжённое выражение и разложение на множители для последующего сокращения с использованием решений квадратных уравнений и формул сокращённого умножения.

Освоим эти приёмы на примерах.

Для преобразования выражений потребуются пособия Действия со степенями и корнями и Действия с дробями.

Неопределённость вида

Пример 12. Раскрыть неопределённость и найти предел .

Решение. Здесь старшая степень переменной n равна 2. Поэтому почленно делим числитель и знаменатель на :

.

Комментарий к правой части выражения. Стрелками и цифрами обозначено, к чему стремятся дроби после подстановки вместо n значения бесконечность. Здесь, как и в примере 2, степень n в знаменателя больше, чем в числителе, в результате чего вся дробь стремится к бесконечно малой величине или "супермалому числу".

Получаем ответ: предел данной функции при переменной, стремящейся к бесконечности, равен .

Пример 13. Раскрыть неопределённость и найти предел .

Решение. Здесь старшая степень переменной x равна 1. Поэтому почленно делим числитель и знаменатель на x:

.

Комментарий к ходу решения. В числителе загоняем "икс" под корень третьей степени, а чтобы его первоначальная степень (1) оставалась неизменной, присваиваем ему ту же степень, что и у корня, то есть 3. Стрелок и дополнительных чисел в этой записи уже нет, так что попробуйте мысленно, но по аналогии с предыдущим примером определить, к чему стремятся выражения в числителе и знаменателе после подстановки бесконечности вместо "икса".

Получили ответ: предел данной функции при переменной, стремящейся к бесконечности, равен нулю.

Неопределённость вида

Пример 14. Раскрыть неопределённость и найти предел .

Решение. В числителе - разность кубов. Разложим её на множители, применяя формулу сокращённого умножения из курса школьной математики:

.

В знаменателе - квадратный трёхчлен, который разложим на множители, решив квадратное уравнение (ещё раз ссылка на решение квадратных уравнений):

Запишем выражение, полученное в результате преобразований и найдём предел функции:

Пример 15. Раскрыть неопределённость и найти предел

Решение. Теорема о пределе частного здесь неприменима, поскольку

Поэтому тождественно преобразуем дробь: умножив числитель и знаменатель на двучлен, сопряжённый знаменателю, и сократим на x +1. Согласно следствию из теоремы 1, получим выражение, решая которое, находим искомый предел:

Пример 16. Раскрыть неопределённость и найти предел

Решение. Непосредственная подстановка значения x = 0 в заданную функцию  приводит к неопределённости вида 0/0. Чтобы раскрыть её, выполним тождественные преобразования и получим в итоге искомый предел:

Продолжение темы "Предел"

Поделиться с друзьями

function-x.ru

Определение и нахождение пределов. Методы решения лимитов

Тестирование онлайн

Определение предела последовательности

Число a называется пределом числовой последовательности, если для любого существует число такое, что для всех n>N выполняется неравенство

Когда число a является пределом числовой последовательности (xn), то пишут:

Пример 1. Рассмотрим числовую последовательность . Найдем несколько первых элементов этой последовательности:Элементы числовой последовательности будем отображать точками на координатной прямой:

Легко заметить, что пункты, которые отображают элементы данной числовой последовательности с нарастанием номера n все ближе и ближе приближаются к пункту a=1. Расстояние от xn до пункта а=1 может быть меньше или вообще любого положительного числа.

Когда последовательность имеет предел, то она называется сходящейся. Когда пределом последовательности является число a, то говорят, что последовательность (xn) сходится к a. (В нашем примере последовательность сходится к 1).

Когда последовательность не имеет предела, то она называется расходящейся.

Из определения предела последовательности следует, что

Арифметические действия над сходящимися последовательностями

Определение предела функции

Число A называется пределом функции y=f(x) в пункте x0, когда для любого положительного числа существует такое положительное число , что для всех x, которые удовлетворяют неравенству выполняется неравенство:

Когда число A является пределом функции f(x), то пишут:

Обратите внимание! Здесь x стремится к некоторому числу, а не к бесконечности. Арифметические действия для пределов фунции аналогичные.

Методы решения пределов

При отыскании пределов отношения двух многочленов относительно x при оба члена отношения полезно разделить на xn, где n - наивысшая степень этих многочленов.

Решение пределов вида , где P(x) и Q(x) - целые многочлены. Если P(x0)=Q(x0)=0, то дробь рекомендуется сократить.

Выражения, содержащие иррациональности, приводятся к рациональному виду во многих случаях путем введения новой переменной.

Еще один способ решения пределов с иррациональными выражениями - это перевод иррациональности из числителя в знаменатель или, наоборот, из знаменателя в числитель.

При вычислении пределов во многих случаях используется формула

Нахождение пределов вида

При решении подобных пределов часто используют формулу числа e:

Некоторые важные пределы:

fizmat.by

Пределы, примеры решений

Решение Первый предел. Для нахождения данного предела достаточно подставить вместо число, к которому оно стремиться, то есть 2, получим

   

Второй предел. В данном случае подставлять в чистом виде 0 вместо нельзя, так как получим деление на 0. Можно рассматривать значения близкие к нулю, например, подставлять 0,01; 0,001; 0,0001; 0,00001 и т. д., при этом значение функции будет возрастать: 100; 1000; 10000; 100000 и т. д. Таким образом, можно сделать вывод о том, что при значение функции, стоящей под знаком предела, будет неограниченно возрастать, то есть стремиться к бесконечности. А значит:

   

Третий предел. Здесь, как и в предыдущем случае, нельзя подставить в чистом виде. Необходимо рассмотреть случай неограниченного возрастания . Подставляя 1000; 10000; 100000 и т.д., получим, что значение функции будет убывать: 0,001; 0,0001; 0,00001; и т.д., стремясь к нулю. Таким образом,

   

ru.solverbook.com

Односторонние пределы функции, формулы и примеры

Рис. 1

Рис. 2

Определение одностороннего предела функции по Гейне

Обозначение:

   

Итак,

   

Обозначение:

   

То есть

   

Определение одностороннего предела по Коши

Замечание. Основные свойства односторонних пределов схожи со свойствами обычных пределов.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Пределы. Понятие пределов. Вычисление пределов.

Понятие пределов рассмотрим на показательных примерах.

Пусть х – числовая переменная величина, Х – область ее изменения. Если каждому числу х, принадлежащему Х, поставлено в соответствие некоторое число у, то говорят, что на множестве Х определена функция, и записывают у = f(x).Множество Х в данном случае – плоскость, состоящая из двух координатных осей – 0X и 0Y. Для примера изобразим функцию у = х2. Оси 0X и 0Y образуют Х – область ее изменения. На рисунке прекрасно видно, как ведет себя функция. В таком случае говорят, что на множестве Х определена функция у = х2.

Совокупность Y всех частных значений функции называется множеством значений f(x). Другими словами, множество значений – это промежуток по оси 0Y, где определена функция. Изображенная парабола явно показывает, что f(x) > 0 , т.к. x2 > 0. Поэтому область значений будет [0; +]. Множество значений смотрим по 0Y.

Совокупность всех х называется областью определения f(x). Множество определений смотрим по 0X и в нашем случае областью допустимых значений является [-; +].

Точка а (а принадлежит или Х) называется предельной точкой множества Х, если в любой окрестности точки а имеются точки множества Х, отличные от а.

Пришла пора понять – что же такое предел функции?

Чисто b, к которому стремится функция при стремлении х к числу а, называется пределом функции. Записывается это следующим образом:

Например, f(x) = х2. Нам надо узнать, к чему стремится (не равна) функция при х 2. Сначала запишем предел:

Посмотрим на график.

Проведем параллельно оси 0Y линию через точку 2 на оси 0X. Она пересечет наш график в точке (2;4). Опустим из этой точки на ось 0Y перпендикуляр – и попадем в точку 4. Вот к чему стремится наша функция при х 2. Если теперь подставить в функцию f(x) значение 2, то ответ будет таким же.

Теперь прежде чем перейти к вычислению пределов, введем базовые определения.

Понятие пределов введено французским математиком Огюстеном Луи Коши в XIX веке.

Допустим, функция f(x) определена на некотором интервале, в котором содержится точка x = A, однако совсем не обязательно, чтобы значение f(А) было определено.

Тогда, согласно определению Коши, пределом функции f(x) будет некое число B при x, стремящимся к А, если для каждого C > 0 найдется число D > 0, при котором

Т.е. если функция f(x) при x А ограничена пределом В, это записывается в виде

.

Пределом последовательности называется некое число А, если для любого сколь угодно малого положительного числа В > 0 найдется такое число N, при котором все значения в случае n > N удовлетворяют неравенству

Такой предел имеет вид .

Последовательность, у которой есть предел, будем называть сходящейся, если нет - расходящейся.

Как Вы уже заметили, пределы обозначаются значком lim, под которым записывается некоторое условие для переменной, и далее уже записывается сама функция. Такой набор будет читаться, как «предел функции при условии…». Например:

- предел функции при х, стремящимся к 1.

Выражение «стремящимся к 1» означает, что х последовательно принимает такие значения, которые бесконечно близко приближаются к 1.

Теперь становится ясно, что для вычисления данного предела достаточно подставить вместо х значение 1:

Ответ: -3.

Кроме конкретного числового значения х может стремиться и к бесконечности. Например:

Выражение х означает, что х постоянно возрастает и неограниченно близко приближается к бесконечности. Поэтому подставив вместо х бесконечность станет очевидно, что функция 1- х будет стремиться к , но с обратным знаком:

Таким образом, вычисление пределов сводится к нахождению его конкретного значения либо определенной области, в которую попадает функция, ограниченная пределом.

Исходя из вышеизложенного следует, что при вычислении пределов важно пользоваться несколькими правилами:

  1. Сперва попытаемся подставить в функцию число. Результат вычисление и будет ответом.
  2. Если х стремиться не к числу, например в пределах вида или , то такие пределы решаются сразу, т.к число деленное на бесконечность всегда дает ноль, а деленное на 0 всегда бесконечность. Если у вас затруднено понимание понятий бесконечность и 0 в пределах, то вы можете подставлять вместо бесконечности - бесконечно большое число - например 1000 000, или вместо 0 - бесконечно малое - к примеру 0,000001 и прикинуть к чему будет стремиться ответ.
  3. Есть еще одна интересная группа пределов, где мы и в числите и в знаменателе при подстановке получаем или 0 или бесконечность. Так называемые пределы с неопределенностью, часть из которых замечательные. Их мы рассматриваем отдельно в статьях "Вычисление пределов. Пределы с неопределенностью" и "Замечательные пределы: Первый и второй замечательный предел".

Понимая сущность предела и основные правила вычисления пределов, вы получите ключевое представление о том, как их решать. Если какой предел будет вызывать у вас затруднения, то пишите в комментарии и мы обязательно вам поможем.

Заметка: Юриспруденция - наука о законах, помогающее в конфлитных и других жизненных трудностях.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru