Определение и примеры неполных квадратных уравнений. Формулы неполного квадратного уравнения


Неполные квадратные уравнения | Алгебра

Как решать неполные квадратные уравнения? Решение и количество корней зависят от вида уравнения.

Неполные квадратные уравнения бывают трёх видов.

Повторим теорию и рассмотрим примеры решения неполных квадратных уравнений каждого вида.

I. Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.

Такие уравнения решаются разложением левой части уравнения на множители.

   

Общий множитель x выносим за скобки:

   

Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

   

Второе уравнение — линейное. Решаем его:

   

   

Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.

Примеры.

   

Общий множитель x выносим за скобки:

   

Это уравнение типа «произведение равно нулю». Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

   

   

Ответ: 0; -18.

   

Общий множитель 5x выносим за скобки:

   

Приравниваем к нулю каждый множитель:

   

   

Ответ: 0; 3.

II. Неполные квадратные уравнения, к которых коэффициент b=0, то есть уравнение имеет вид ax²+c=0 (или ax²-c=0).

Неполное квадратное уравнение такого вида либо имеет два корня, которые отличаются только знаками (являются противоположными числами), либо не имеет корней.

1. Если знаки a и c  — разные, уравнение имеет два корня.

В курсе алгебры 7 класса такие уравнения решают разложением левой части на множители по формуле разности квадратов (поскольку квадратные корни начинают учить только в курсе 8 класса, коэффициенты a и c в 7 классе обычно являются квадратами  некоторых рациональных чисел):

   

   

Уравнение типа «произведение равно нулю». Приравниваем к нулю каждый из множителей:

   

   

   

   

   

Раскладываем левую часть уравнения по формуле разности квадратов:

   

Это уравнение — типа «произведение равно нулю». приравниваем к нулю каждый множитель:

   

   

Ответ: 7; -7.

   

   

   

   

   

   

Ответ: 2,25; -2,25.

2. Если знаки a и c — одинаковые, уравнение не имеет корней.

   

Корней нет, так как сумма положительных чисел не может равняться нулю.

Ответ: нет корней.

   

Корней нет, так как сумма отрицательных чисел не может равняться нулю.

Ответ: нет корней.

В курсе алгебры 8 класса, после изучения квадратных корней, эти уравнения обычно решают приводя к виду x²=d:

   

   

   

   

Примеры.

   

   

   

   

   

Ответ:±2.

   

   

   

   

Чтобы избавиться от иррациональности в знаменателе, умножаем и числитель, и знаменатель на √11:

   

Ответ:

   

   

   

   

Корней нет, так как квадратный корень не может равняться отрицательному числу.

Ответ: нет корней.

   

   

   

Нет корней, так как квадратный корень не может быть равным отрицательному числу.

Ответ: нет корней.

III. Неполные уравнения, в которых коэффициенты b=0 и c=0, то есть уравнение имеет вид ax²=0.

Уравнение такого рода имеет единственный корень x=0

В некоторых учебниках считается, что уравнение имеет два одинаковых корня, каждый из которых равен нулю:

   

Примеры.

   

   

Ответ: 0.

   

   

Ответ: 0.

   

   

Ответ: 0.

В следующий раз рассмотрим примеры решения полных квадратных уравнений.

www.algebraclass.ru

Неполные квадратные уравнения

Неполное квадратное уравнение – это уравнение вида

  ax2 + bx + c = 0,

в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

ax2 + bx = 0,   если   c = 0
ax2 + c = 0,   если   b = 0
ax2 = 0,   если   b = 0   и   c = 0

Решение неполных квадратных уравнений

Чтобы решить уравнение вида   ax2 + bx = 0, надо разложить левую часть уравнения на множители, вынеся x за скобки:

x(ax + b) = 0

Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

x = 0   или   ax + b = 0

Чтобы   ax + b   было равно нулю, нужно, чтобы

Следовательно, уравнение   ax2 + bx = 0   имеет два корня:

Неполные квадратные уравнения вида   ax2 + bx = 0,   где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

Пример 1. Решите уравнение:

a2 - 12a = 0

Решение:

a2 - 12a = 0
a(a - 12) = 0
a1 = 0      a - 12 = 0
a2 = 12

Пример 2. Решите уравнение:

7x2 = x

Решение:

7x2 = x
7x2 - x = 0
x(7x - 1) = 0
x1 = 0      7x - 1 = 0
7x = 1

Чтобы решить уравнение вида   ax2 + c = 0, надо перенести свободный член уравнения c в правую часть:

ax2 = -c,   следовательно   x2 = -c
a

В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

Если данное неполное уравнение будет иметь вид   x2 - c = 0, то сначала опять переносим свободный член в правую часть и получаем:

x2 = c

В этом случае уравнение будет иметь два противоположных корня:

x1 = +√c,   x2 = -√c

Неполное квадратное уравнение вида   ax2 + c = 0,   где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

Пример 1. Решите уравнение:

24 = 2y2

Решение:

24 = 2y2
24 - 2y2 = 0
-2y2 = -24
y2 = 12
y1 = +√12      y2 = -√12

Пример 2. Решите уравнение:

b2 - 16 = 0

Решение:

b2 - 16 = 0
b2 = 16
b1 = 4      b2 = -4

Уравнение вида   ax2 = 0, всегда имеет только один корень: x = 0. Так как a ≠ 0, то из   ax2 = 0   следует, что   x2 = 0, значит и   x = 0. Любое другое значение x не будет являться корнем данного уравнения.

naobumium.info

Квадратные уравнения. Полное квадратное уравнение. Неполное квадратное уравнение. Дискриминант.

Как решить квадратное уравнение?Как выглядит формула квадратного уравнения?Какие бывают квадратные уравнения?Что такое полное квадратное уравнение?Что такое неполное квадратное уравнение?Что такое дискриминант?Сколько корней имеет квадратное уравнение?Эти вопросы вас больше не будут мучить, после изучения материала.

Формула квадратного уравнения:

ax2+bx+c=0,где a≠0

где x — переменная,a,b,c — числовые коэффициенты.

Виды квадратного уравнения

Пример полного квадратного уравнения:

3x2-3x+2=0x2-16x+64=0

Решение полных квадратных уравнений сводится к нахождению дискриминанта:

Формула дискриминанта:

D=b2-4aс

Если D>0, то уравнение имеет два корня и находим эти корни по формуле:

Корни квадратного уравнения

Если D=0, уравнение имеет один корень

корень уравнения

Если D<0, уравнение не имеет вещественных корней.

Рассмотрим пример №1:

x2-x-6=0

Записываем сначала, чему равны числовые коэффициенты a, b и c.

Коэффициент a всегда стоит перед x2, коэффициент b  всегда перед переменной x, а коэффициент  c – это свободный член.a=1,b=-1,c=-6

Находим дискриминант:D=b2-4ac=(-1)2-4∙1∙(-6)=1+24=25

Дискриминант больше нуля, следовательно, у нас два корня, найдем их:

Нахождения корней по дискриминанту

Ответ: x1=3; x2=-2

Пример №2:x2+2x+1=0Записываем, чему равны числовые коэффициенты a,b и c.a=1,b=2,c=1Далее находи дискриминант.D=b2-4ac=(2)2-4∙1∙1=4-4=0Дискриминант равен нулю, следовательно, один корень:x=-b/2a=-2/(2∙1)=-1

Ответ: x=-1

Пример №3:7x2-x+2=0Записываем, чему равны числовые коэффициенты a,b и c.a=7,b=-1,c=2Далее находи дискриминант.D=b2-4ac=(-1)2-4∙7∙2=1-56=-55Дискриминант меньше нуля, следовательно, корней нет.

Рассмотрим неполное квадратное уравнение:ax2+bx=0, где числовой коэффициент c=0.

Пример как выглядят такие уравнения:x2-8x=05x2+4x=0

Чтобы решить такое уравнение необходимо переменную x вынести за скобки. А потом каждый множитель приравнять к нулю и решить уже простые уравнения.ax2+bx=0x(ax+b)=0x1=0 x2=-b/a

Пример №1:3x2+6x=0Выносим переменную x за скобку,x(3x+6)=0Приравниваем каждый множитель к нулю,x1=0

3x+6=03x=-6Делим все уравнение на 3, чтобы получить у переменной x коэффициент равный 1.x=(-6)/3x2=-2

Ответ: x1=0; x2=-2

Пример №2:x2-x=0Выносим переменную x за скобку,x(x-1)=0Приравниваем каждый множитель к нулю,x1=0

x-1=0x2=1

Ответ: x1=0; x2=1

Рассмотрим неполное квадратное уравнение:ax2+c=0, где числовой коэффициент b=0.

Чтобы решить это уравнение, нужно записать так:x2=c/a , если число c/a будет отрицательным числом, то уравнение не имеет решения.А если c/a положительное число, то решение выглядит таким образом:

корень квадратного уравнения

Пример №1:x2+5=0x2=-5, видно, что -5<0, значит нет решения.Ответ: нет решения

Пример №2:3x2-12=03x2=12x2=12/3x2=4

4>0 следовательно, есть решение,x1=√4x1=2

x2=-√4x2=-2

Ответ: x1=2; x2=-2

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

tutomath.ru

Неполное квадратное уравнение. Примеры решения

Неполное квадратное уравнение отличаются от классических (полных) уравнений тем, что его множители или свободный член равны нулю. Графиком таких функций являются параболы. В зависимости от общего вида их делят на 3 группы. Принципы решения для всех типов уравнений одинаковы.

Разновидности неполных уравнений

Ничего сложного в определении типа неполного многочлена нет. Рассмотреть основные отличия лучше всего на наглядных примерах:

  1. Если b = 0, то уравнение имеет вид ax2 + c = 0.
  2. Если c = 0, то решать следует выражение ax2 + bx = 0.
  3. Если b = 0 и c = 0, то многочлен превращается в равенство типа ax2 = 0.

Последний случай является скорее теоретической возможностью и никогда не встречается в заданиях для проверки знаний, так как единственно верное значение переменной x в выражении – это ноль. В дальнейшем будет рассмотрены способы и примеры решения неполных квадратных уравнений 1) и 2) видов.

Общий алгоритм поиска переменных и примеры с решением

Не зависимо от разновидности уравнения алгоритм решения сводится к следующим шагам:

  1. Привести выражение к удобному для поиска корней виду.
  2. Произвести вычисления.
  3. Записать ответ.

Решать неполные уравнения проще всего, разложив на множители левую часть и оставив ноль в правой. Таким образом, формула неполного квадратного уравнения для поиска корней сводится к вычислению значения x для каждого из множителей.

Научиться способам решения можно только лишь на практике, поэтому рассмотрим конкретный пример нахождения корней неполного уравнения:

4x2 – 1 = 0.

Как видно, в данном случае b = 0. Разложим левую часть на множители и получим выражение:

4(x – 0,5) ⋅ (x + 0,5) = 0.

Очевидно, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Подобным требованиям отвечают значения переменной x1 = 0,5 и (или) x2 = -0,5.

Для того, чтобы легко и быстро справляться с задачей разложения квадратного трехчлена на множители, следует запомнить следующую формулу:

Если в выражении отсутствует свободный член, задача многократно упрощается. Достаточно будет всего лишь найти и вынести за скобки общий знаменатель. Для наглядности рассмотрим пример, как решать неполные квадратные уравнения вида ax2 + bx = 0.

x2 + 3x = 0

Вынесем переменную x за скобки и получим следующее выражение:

x ⋅ (x + 3) = 0.

Руководствуясь логикой, приходим к выводу, что x1 = 0, а x2 = -3.

Традиционный способ решения и неполные квадратные уравнения

Что же будет, если применить формулу дискриминанта и попытаться найти корни многочлена, при коэффициентах равных нулю? Возьмем пример из сборника типовых заданий для ЕГЭ по математики 2017 года, решим его с помощью стандартных формул и методом разложения на множители.

-7x2 – 3x = 0.

Рассчитаем значение дискриминант: D = (-3)2 – 4 ⋅ (-7) ⋅ 0 = 9. Получается, многочлен имеет два корня:

Теперь, решим уравнение разложением на множители и сравним результаты.

-x ⋅ (7x + 3) = 0,

1) –x1 = 0,

2) 7x + 3 = 0,7x = -3,x = -.

Как видно, оба метода дают одинаковый результат, но решить уравнение вторым способ получилось гораздо проще и быстрее.

Теорема Виета

А что же делать с полюбившейся теоремой Виета? Можно ли применять данный метод при неполном трехчлене? Попробуем разобраться в аспектах приведения неполных уравнений к классическому виду ax2 + bx + c = 0.

На самом деле применять теорему Виета в данном случае возможно. Необходимо лишь привести выражение к общему виду, заменив недостающие члены нулем.

Например, при b = 0 и a = 1, дабы исключить вероятность путаницы следует записать задание в виде: ax2 + 0 + c = 0. Тогда отношение суммы и произведения корней и множителей многочлена можно выразить следующим образом:

Теоретические выкладки помогают ознакомиться с сутью вопроса, и всегда требуют отработки навыка при решении конкретных задач. Снова обратимся к справочнику типовых заданий для ЕГЭ и найдем подходящий пример:

x2 – 16 = 0.

Запишем выражение в удобном для применения теоремы Виета виде:

x2 + 0 – 16 = 0.

Следующим шагом составим систему условий:

Очевидно, что корнями квадратного многочлена будут x1 = 4 и x2 = -4.

Теперь, потренируемся приводить уравнение к общему виду. Возьмем следующий пример: 1/4× x2 – 1 = 0

Для того, чтобы применить к выражению теорему Виета необходимо избавиться от дроби. Перемножим левую и правую части на 4, и посмотрим на результат: x2– 4 = 0. Полученное равенство готово для решения теоремой Виета, но гораздо проще и быстрее получить ответ просто перенеся с = 4 в правую часть уравнения: x2 = 4.

Подводя итог, следует сказать, что лучшим способом решения неполных уравнений является разложения на множители, является самым простым и быстрым методом. При возникновении затруднений в процессе поиска корней можно обратиться к традиционному методу нахождения корней через дискриминант.

 

 

Похожие статьи

Рекомендуем почитать:

karate-ege.ru

Решение квадратных уравнений

6 июля 2011

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:a = 1, b = −8, c = 12;D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:a = 5; b = 3; c = 7;D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:a = 1; b = −6; c = 9;D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2x − x2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Стандартный вид числа
  4. Комбинаторика в задаче B6: легкий тест
  5. Задача C2: уравнение плоскости через определитель
  6. Задачи на проценты считаем проценты с помощью формулы

www.berdov.com

Квадратное уравнение | Алгебра

Определение

Квадратное уравнение — это уравнение вида

   

где a, b, c — числа, причём a ≠ 0.

Если коэффициенты b и c отличны от нуля, квадратное уравнение называется полным.

Если b или c или оба коэффициента равны нулю, квадратное уравнение называется неполным.

Решение полного квадратного уравнения

Количество корней полного квадратного уравнения зависит от значения дискриминанта.

Дискриминант — это число, вычисляемое по формуле

   

1) Если D>0, квадратное уравнение имеет два корня, которые находят по формуле

   

2) Если D=0, квадратное уравнение имеет один корень, который находят по формуле

   

3) Если D<0, квадратное уравнение не имеет корней в действительных числах.

Решение неполных квадратных уравнений

1) Если c=0

   

Общий множитель x выносим за скобки

   

Это уравнение типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

   

или

   

откуда

   

Таким образом, при c=0 квадратное уравнение имеет два корня, один из которых равен нулю, второй — -b/a.

2) Если b=0

   

Если знаки a и с разные (например, a>0, c<0), левую часть уравнения можно разложить по формуле разности квадратов

   

   

   

Это уравнение — типа «произведение равно нулю». Приравниваем к нулю каждый из множителей:

   

или

   

Отсюда

   

Если -a<0, c>0, обе части уравнения делим на -a

   

и получаем то же уравнение

   

Если знаки a и c одинаковые, уравнение не имеет решений.

Если a>0, c>0, то, так как x² — неотрицательное, то ax²≥0 (на самом деле, здесь ax²>0) . Сумма положительных чисел не может равняться нулю, поэтому это уравнение не имеет корней.

Если a<0, c<0, то ax²≤0 (в примерах этого вида ax²<0). Сумма отрицательных чисел не может равняться нулю.

В дальнейшем обычно решают короче:

   

   

   

   

или

   

   

корней нет.

Таким образом, при b=0 квадратное уравнение либо имеет два корня, которые отличаются только знаками (то есть являются противоположными числами), либо не имеет действительных корней.

3) Если b=0 и c=0

   

Это уравнение имеет один корень x=0.

Итак, квадратное уравнение может иметь два корня, один корень либо не иметь ни одного корня.

В некоторых источниках один корень рассматривается как два одинаковых корня:

   

   

Такие корни называются кратными (второй степени).

В следующий раз для удобства использования запишем виды квадратных уравнений и способы их решения в виде схемы.

Затем рассмотрим примеры решения квадратных уравнений различных видов.

www.algebraclass.ru

Неполные квадратные уравнения, формулы и примеры

Определение и формула неполного квадратного уравнения

1. Коэффициент . В этом случае квадратное уравнение (1) принимает вид:

   

или

   

Если выражение, стоящее в правой части последнего равенства, положительно, то есть , то имеем два корня

   

В случае если , то уравнение решения не имеет.

2. Свободный коэффициент . Уравнение (1) принимает вид:

   

Левая часть содержит общий множитель , который вынесем за скобки:

   

Произведение равно нулю, когда хотя бы один из сомножителей равен нулю, то есть последнее уравнение распадается на два:

   

   

3. Коэффициенты . Тогда уравнение (1) запишется в виде:

   

и имеет нулевой кратный корень .

Понравился сайт? Расскажи друзьям!

ru.solverbook.com