Как найти модуль скорости. Формула модуль вектора скорости


Найти вектор скорости и ускорения точки, примеры решений

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора — вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

 

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами — единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? «Наверное какой-то жуткий», подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки — это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора — это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему «механика твердых тел». А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

artsybashev.ru

Физические основы механики

Скорость — векторная величина, характеризующая не только быстроту передвижения частицы по траектории, но и направление, в котором движется частица в каждый момент времени.

Средняя скорость за время от t1 до t2 равна отношению перемещения за это время к промежутку времени , за которое это перемещение имело место:

Тот факт, что это именно средняя скорость мы будем отмечать, заключая среднюю величину в угловые скобки: <...> , как это сделано выше.

Приведенная выше формула для среднего вектора скорости есть прямое следствие общего математического определения среднего значения <f(x)> произвольной функции f(x) на промежутке [a,b]:

Действительно

Средняя скорость может оказаться слишком грубой характеристикой движения. Например, средняя скорость за период колебаний всегда равна нулю, в независимости от характера этих колебаний, по той простой причине, что за период — по определению периода — колеблющееся тело вернется в исходную точку и, следовательно, перемещение за период всегда равно нулю. По этой и ряду других причин, вводится мгновенная скорость — скорость в данный момент времени. В дальнейшем, подразумевая мгновенную скорость, будем писать просто: «скорость», опуская слова «мгновенная» или «в данный момент времени» всегда, когда это не может привести к недоразумениям.Для получения скорости в момент времени t надо сделать очевидную вещь: вычислить предел отношения при стремлении промежутка времени t2 – t1 к нулю. Сделаем переобозначения: t1 = t и t2 = t + и перепишем верхнее соотношение в виде:

Скорость в момент времени t равна пределу отношения перемещения за время к промежутку времени, за которое это перемещение имело место, при стремлении последнего к нулю

Рис. 2.5. К определению мгновенной скорости.

В данный момент мы не рассматриваем вопрос о существовании этого предела, предполагая, что он существует. Отметим, что если и есть конечное перемещение и конечный промежуток времени, то и — их предельные величины: бесконечно малое перемещение и бесконечно малый промежуток времени. Так что правая часть определения скорости

есть ничто иное как дробь — частное от деления на , поэтому последнее соотношение может быть переписано и весьма часто используется в виде

Здесь и далее мы часто для удобства будем использовать восходящее к Ньютону обозначение производной по времени в виде точки над соответствующей величиной:

По геометрическому смыслу производной, вектор скорости в каждой точке траектории направлен по касательной к траектории в этой точке в её сторону движения.

Видео 2.1. Вектор скорости направлен по касательной к траектории. Эксперимент с точилом.

Любой вектор можно разложить по базису (для единичных векторов базиса, другими словами, единичных векторов, определяющих положительные направления осей OX,OY,OZ используем обозначения , , или , соответственно). Коэффициентами такого разложении являются проекции вектора на соответствующие оси. Важно следующее: в алгебре векторов доказано, что разложение по базису единственно. Разложим по базису радиус-вектор некоторой движущейся материальной точки

Учитывая постоянство декартовых единичных векторов , , , продифференцируем это выражение по времени

С другой стороны, разложение по базису вектора скорости имеет вид

опоставление двух последних выражений, с учетом единственности разложения любого вектора по базису, дает следующий результат: проекции вектора скорости на декартовы оси равны производным по времени от соответствующих координат, то есть

Модуль вектора скорости равен

Получим ещё одно, важное, выражение для модуля вектора скорости.

Уже отмечалось, что при величина || все меньше и меньше отличается от соответствующего пути (см. рис. 2). Поэтому

и в пределе (>0)

Иными словами, модуль скорости — это производная пройденного пути по времени.

Окончательно имеем:

Средний модуль вектора скорости, определяется следующим образом:

Среднее значение модуля вектора скорости равно отношению пройденного пути ко времени, в течение которого этот путь был пройден:

Здесь s(t1, t2) — путь за время от t1 до t2 и, соответственно, s(t0, t2) — путь за время от t0 до t2 и s(t0, t2) — путь за время от t0 до t1.

Средний вектор скорости или просто средняя скорость, как указано выше, равен

Отметим, что прежде всего, это вектор, его модуль — модуль среднего вектора скорости не следует путать со средним значением модуля вектора скорости. В общем случае они не равны: модуль среднего вектора вовсе не равен среднему модулю этого вектора . Две операции: вычисление модуля и вычисление среднего, в общем случае, переставлять местами нельзя.

Рассмотрим пример. Пусть точка движется в одну сторону. На рис. 2.6. показан график пройденного ею пути s в от времени (за время от 0 до t). Используя физический смысл скорости, найти с помощью этого графика момент времени , в который мгновенная скорость равна средней путевой скорости за первые секунд движения точки.

Рис. 2.6. Определение мгновенной и средней скорости тела

Модуль скорости в данный момент времени

будучи производной пути по времени, равен угловому коэффициенту качательной к графику зависисмости точке соответствующей моменту времени t*. Средний модуль скорости за промежуток времени от 0 до t* есть угловой коэффициент секущей, проходящей через точки того же графика, соответствующие началу t = 0 и концу t = t* временного интервала. Нам надо найти такой момент времени t*, когда оба угловых коэффициента совпадают. Для этого через начало координат проводим прямую, касательную к траектории. Как видно из рисунка точка касания этой прямой графика s(t) и дает t*. В нашем примере получается

online.mephi.ru

§3. Вектор скорости.

Для характеристики быстроты движения вводится понятие скорости.

Определение: Средней скоростью движения точки за интервал времени от доназывается векторная величина равная отношению приращения радиус-вектора точки за этот промежуток времени к его продолжительности.

- средняя скорость.

Определение: Скорость (или мгновенная скорость) точки называется векторная величина, равная первой производной по времени от радиус-вектора.

Вектор скорости характеризует движение, как по величине, так и по направлению. Вектор скорости всегда направлен по касательной к траектории в сторону движения.

Определение: Модуль скорости равен первой производной по времени от пройденного пути.

Разложим вектор скорости по базису прямоугольной декартовой системы координат:

, гдеVx, Vy, Vz проекции вектора скорости на соответствующую ось, которые соответственно равны:

где - это иксовая проекция радиус-вектора материальной точки.

В координатном представлении вектор скорости имеет вид:

Модуль вектора скорости в координатном представлении:

Обратное соотношение.

Представим радиус вектор скорости посредством определенного и неопределенного интеграла:

где t, t0 – начальный и конечный момент времени.

Представление пройденного пути через модуль скорости посредством определенного и неопределенного интеграла.

§4. Вектор ускорения.

Для характеристики быстроты изменения вектора скорости точки в механике вводится понятие ускорения.

Определение: Среднее ускорение за интервал времени от доназывается векторная величина равная отношению приращения вектора скорости точки за данный интервал времени к его величине.

Определение: Ускорение (или мгновенное ускорение) точки называется векторная величина, численно равная первой производной по времени от скорости рассматриваемой точки или, что то же самое, вторая производная по времени от радиус-вектора этой точки:

Ускорение можно ввести через предел от среднего ускорения:

Две введенные записи ускорения являются эквивалентными.

Разложим вектор ускорения по базису прямоугольной декартовой системы координат:

где ax, ay, az – проекции вектора ускорения на ось.

Координатное представление модуля вектора ускорения:

Обратные соотношения:

;

Рассмотрим движение материальной точки вдоль плоской кривой. Ускорение всегда направлено внутрь вогнутости кривой или траектории. Введем два единичных вектора: , который направлен по касательной к траектории и- направлен перпендикулярно траектории в центр кривой.

;

Разложим вектор ускорения по заданным направлениям.

- касательное ускорение.

Определение: Касательное ускорение – векторная величина, характеризующая быстроту изменения вектора скорости по модулю.

- векторное представление.

- скалярное представление.

- нормальное ускорение.

Определение: Нормальное ускорение характеризует быстроту изменения вектора скорости по направлению и вычисляется по формуле:

-где R- радиус кривизны траектории в точке М

Если траектория – окружность, то R – радиус окружности.

В скалярном представлении:

Из свойств составляющих полное ускорение следует, что полное ускорение направленно в сторону вогнутости траектории.

Модуль полного ускорения равен:

Аналогично для вектора полного ускорения:

studfiles.net

Как найти модуль скорости

Как определяется модуль и направление скорость точки при координатном способе задания движения?

Какие способы задания движения точки применяются в кинематике и в чем они состоят? Как определить траекторию при координатном способе задания точки?

Движение точки в пространстве определяется тремя основными способами: векторным, координатным и естественным.

Векторный: выберем некоторый неподвижный центр О и проведём из центра в точку М, движение которой изучаем, радиус-вектор r. При движении точки М радиус-вектор изменяется по величине и направлению.

Каждому моменту времени t соответствует определённое значение r. Следовательно, радиус-вектор однозначно определяет положение точки М.

таким образом, чтобы определить движение точки, нужно задать её радиус-вектор в виде однозначной и непрерывной функции времени r: r=r(t).

Координатный: Если координаты точки заданы как однозначные функции времени: x=x(t), y=y(t), z=z(t), то положение точки М в пространстве известно в каждый момент времени. Эти уравнения определяют закон движение точки и называются уравнениями её движения.

Естественный: этот способ задания движения применяется в том случае, когда траектория точки, относительно выбранной системы отсчёта, известна.

При движении точки М криволинейная координата s будет изменяться с течением времени, то есть: s=s(t). Зная это уравнение, можно определить положение точки в каждый момент времени.

Его называют уравнением движение или законом движения вдоль заданной траектории.

Зададим положение точки в пространстве координатным особом: x=x(t), y=y(t), z=z(t) (*). Чтобы определить положение точки в начальный момент времени (t=0) необходимо в уравнения (*) подставить t=0.

Теперь, для определения траектории точки: s=s(t) воспользуемся формулой длины дуги кривой:или, с учётом того, что дифференцирование производиться по времени, можно переписать так:.

Знак «+» берётся в том случае, когда точка движется в сторону с положительного отсчёта криволинейной координаты s.

Какая зависимость существует между радиус-вектором движущейся точки и вектором скорости этой точки? Как направлен вектор скорости криволинейного движения точки по отношению к её траектории?

Разложим радиус векторпо ортам декартовой системы координат:. Теперь продифференцируем равенство по времени.

В результате получим разложение скорости по ортам:, разложение можно представить так:, где,,- проекции вектора скорости на оси координат.

Таким образом, проекции скорости на неподвижные декартовы оси координат равны первым производным по времени соответствующих координат движущейся точки.

При векторном: Для того, чтобы точно вычислить скорость точки в данный момент времени, необходимо перейти в формулеперейти к пределу при стремлении промежутка времени к нулю, то есть:.

Этот предел представляет собой первую векторную производную по времени от радиус-вектора точки по времени.

Как следует из этих формул, вектор скорости направлен по касательной к траектории точки в сторону её движения.

При координатном: Найдём модуль скорости, зная её проекции:. Для определения направления вектора скорости воспользуемся направляющими косинусами:

,,. В итоге мы всё же прижжем к выводу, что вектор скорости направлен по касательной к траектории.

При естественном:, известно, что. Векторесть единичный вектор касательной к траектории (её орт), направленный в сторону возрастания криволинейной координаты s. Обозначая орт касательнойзапишем начальную формулу так:, домножим левую и правую часть уравнения на единичный вектор:. Перепишет выражение так:. Таким образом, видно, что вектор скорости направлено по касательной к траектории точки.

Как определяется модуль и направление скорость точки при координатном способе задания движения?

,,Таким образом, проекции скорости на неподвижные декартовы оси координат равны первым производным по времени от соответствующих координат движущейся точки. Из равенств следует, что проекции скорости точки на координатные оси равны скорости проекций этой точки на те же оси. Зная проекции вектора скорости точки, найдём его модуль:.

Для определения направления вектора скорости воспользуемся направляющими косинусами:

,,.

Какая зависимость существует между радиус-вектором движущейся точки и вектором ускорения точки? Как направлен вектор ускорения криволинейного движения точки по отношению к её траектории, в какой плоскости он лежит?

, при стремлениик нулю получаем следующий предел:, этот предел называют ускорение точки в данный момент времени. Так как вектор скорости есть первая производная радиус-вектора точки по времени, то:. Таким образом, ускорение точки в данный момент времени, есть векторная величина, равная первой производной от вектора скорости или второй производной от радиус-вектора по времени.

Установим теперь положение вектораотносительно траектории. Отметим, что плоскость треугольника МАВ, образованного векторами,и, прибудет поворачиваться вокруг вектора, т.е. вокруг касательной к траектории в точке М, и займёт в пределе определённое предельной положение. Это предельное положение плоскости МАВ называется соприкасающейся плоскостью в точке М траектории.

Вектор среднего ускорениянаправлен так же, как и, т.е. в сторону вогнутости кривой, и всё время находиться в плоскости треугольника МАВ. Предел вектораприесть вектор, который расположен в предельном положении треугольника МАВ, т.е. в соприкасающейся плоскости траектории точки М.

Итак, вектор полного ускорения точки находиться в соприкасающейся плоскости траектории точки М направлен в сторону вогнутости траектории.

Источник: https://megaobuchalka.ru/5/34383.html

модуль скорости — это… Что такое модуль скорости?

  • модуль пластичности — Коэфф. пропорц. м ду напряжением и степенью пластич. деформации, определ. по кривым упрочнения. Имеет размерность напряжения. По аналогии с м. упругости различают м. п. 1 го рода (Е ') и 2 го рода (G1). При пластич. деформации, когда коэфф.… …   Справочник технического переводчика
  • Модуль сдвига — Сдвиговая деформация В материаловедении модулем сдвига (обозначается буквой G или μ), называется отношение касательного напряжения к сдвиговой деформации …   Википедия
  • модуль пластичности — [modulus of plasticity (ductility)] коэффициент пропорциональности между напряжением и степенью пластической деформации, определяемый по кривым упрочнения. Имеет размерность напряжения. По аналогии с модулем упругости различают модуль… …   Энциклопедический словарь по металлургии
  • Абсолютная относительная и переносная скорости — Скорость (часто обозначается , от англ. velocity или фр. vitesse)  векторная величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта. Этим же словом может… …   Википедия
  • Вектор скорости — Скорость (часто обозначается , от англ. velocity или фр. vitesse)  векторная величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта. Этим же словом может… …   Википедия
  • ЦИРКУЛЯЦИЯ СКОРОСТИ — кинематич. характеристика течения жидкости или газа, к рая служит мерой завихренности течения. Ц. с. связана с вращением элементарного объёма жидкости (газа) при его деформации в процессе движения. Если скорости всех жидких ч ц, расположенных на… …   Физическая энциклопедия
  • Синхронный транспортный модуль — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей …   Википедия
  • Доплеровский измеритель скорости и сноса — (ДИСС) бортовое радиолокационное устройство, основанное на использовании эффекта Доплера, предназначенное для автоматического непрерывного измерения и индикации составляющих вектора скорости, модуля путевой скорости, угла сноса и координат… …   Википедия
  • Синхронный транспортный модуль — 3.11 Синхронный транспортный модуль (STM) информационная структура, используемая в СЦИ для поддержки соединений на уровне секции. Состоит из информационной нагрузки и секционного заголовка (SOH), входящих в структуру цикла, который повторяется… …   Словарь-справочник терминов нормативно-технической документации
  • синхронный транспортный модуль порядка N (системы передачи железнодорожного транспорта) — Информационная структура, используемая для поддержки соединений на уровне секций СЦИ, состоящая из секционного заголовка и информационной нагрузки, организованных в блочную цикличную структуру, которая повторяется каждые 125 мкс. Примечания 1.… …   Справочник технического переводчика
  • синхронный транспортный модуль порядка N (системы передачи железнодорожного транспорта) — 94 синхронный транспортный модуль порядка N (системы передачи железнодорожного транспорта): Информационная структура, используемая для поддержки соединений на уровне секций СЦИ, состоящая из секционного заголовка и информационной нагрузки,… …   Словарь-справочник терминов нормативно-технической документации

Источник: https://geography_russian_kazakh.academic.ru/7417/%D0%BC%D0%BE%D0%B4%D1%83%D0%BB%D1%8C_%D1%81%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82%D0%B8

Средний модуль скорости

Главная | Обратная связь
АрхеологияАрхитектураАстрономияАудитБиологияБотаникаБухгалтерский учётВойное делоГенетикаГеографияГеологияДизайнИскусствоИсторияКиноКулинарияКультураЛитератураМатематикаМедицинаМеталлургияМифологияМузыкаПсихологияРелигияСпортСтроительствоТехникаТранспортТуризмУсадьбаФизикаФотографияХимияЭкологияЭлектричествоЭлектроникаЭнергетика КИНЕМАТИКАДвижение с постоянным ускорением
Задача 1.1 Точка, движущаяся равноускоренно с начальной скоростью, модуль которой υ0 = 1,0м/с, приобретает, пройдя некоторое расстояние, скорость, модуль которой 7,0 м/с. Какова была скорость точки на половине этого расстояния?
Задача 1.2 Двигаясь равноускоренно, точка проходит за 5,0 с путь 30 см, а за следующие 5,0 с путь 80 см. Определить начальную скорость и ускорение точки.
Задача 1.3 Поезд после 10 с после начала движения приобретает скорость 0,6 м/с. Через сколько времени от начала движения скорость поезда станет равна 3 м/с?
Задача 1.4 Велосипедист движется под уклон с ускорением 0,3 м/с2. Какую скорость приобретает велосипедист через 20 с, если начальная скорость равна 4 м/с?
Задача 1.5 За какое время автомобиль, двигаясь с ускорением 0,4 м/с2, увеличит свою скорость с 12 м/с до 20 м/с?
Задача 1.6 За какое время автомобиль, двигаясь из состояния покоя с ускорением 0,6 м/с2, пройдёт 30 м?
Задача 1.7 Пуля в стволе автомата Калашникова движется с ускорением 616 км/с2. Какова скорость вылета пули, если длина ствола 41,5 см?
Задача 1.8 При аварийном торможении автомобиль, движущийся со скоростью 72 км/ч, остановился через 5 с. Найти тормозной путь.
Задача 1.9 Уклон длиной 100 м лыжник прошёл за 20 с, двигаясь с ускорением 0,3 м/с2. Какова скорость лыжника в начале и конце уклона?

Свободное падение тел

Задача 2.1 Самолет летит на цель под углом α = 60О к горизонту вниз со скоростью 720 км/ч и сбрасывают груз на высоте 1,00.103 м. На каком расстоянии от цели (по горизонтальному направлению) надо сбросить груз, чтобы он упал в заданной точке?
Задача 2.2 Первое тело брошено вертикально вверх. Модуль начальной скорости υ0 = 5,0 м/с. В тот же момент времени вертикально вниз брошено второе тело с таким же модулем начальной скорости из точки, соответствующей максимальной высоте подъема первого тела. Определить: 1) момент времени, когда два тела будут находиться на одинаковой высоте и эту высоту; 2) скорости первого и второго тела при их нахождении на одинаковой высоте.
Задача 2.3 При свободном падении первое тело находилось в полёте в 2 раза больше времени, чем второе. Сравните конечные скорости тел и их перемещения.
Задача 2.4 Тело брошено с высоты h0 над поверхностью земли со скоростью υ0 под углом α к горизонту. Найти: 1) время t1 подъёма до максимальной высоты; 2) максимальную высоту подъёма h2; 3) время полёта t2 тела; 4) горизонтальную дальность полёта ℓ2; 5) скорость телав момент падения.

Средний модуль скорости

Задача 3.1 Студент проехал первую половину времени со скоростью, модуль которой υ1 = 12,0 м/с, вторую половину времени – со скоростью, модуль которой υ2 = 16,0 м/с. Определить средний модуль скорости движения студента за все время движения.
Задача 3.2 Студент проехал первую половину пути со скоростью, модуль которой υ1 = 12,0 м/с, вторую половину пути – со скоростью, модуль которой υ2 = 16,0 м/с. Определить средний модуль скорости движения студента на всем пути.

©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.

Источник: http://studopedya.ru/1-78205.html

Большая Энциклопедия Нефти и Газа

Cтраница 1

Модуль скорости v частицы меняется со временем t по закону vat — — b, где а и Ъ — положительные постоянные. Найти тангенциальное шт и нормальное wn ускорения, а также радиус кривизны R траектории в зависимости от времени.  [1]

Модуль скорости 1с, как определено в предыдущей задаче, для данного положения механизма равен 130т; см / сек.  [2]

Модуль скорости г в, как мы уже определили, равен 460 см / сек.  [3]

Модуль скорости, вообще говоря, не совпадает с производной по времени dr / dt модуля радиуса-вектора частицы.  [4]

Модуль скорости v здесь должен быть вычислен по формуле (6.13), а знак берется в соответствии с выбором положительного направления отсчета дуг траектории.  [5]

Модуль скорости равен модулю производной от закона движения точки по времени.  [6]

Модуль скорости, конечно, остается постоянным и во внешней системе координат, так как модуль вектора — абсолютный скаляр, не зависящий от выбора координатной системы.  [7]

Модуль скорости v здесь должен быть вычислен по формуле (6.13), а знак берется в соответствии с выбором положительного направления отсчета дуг траектории.  [8]

Модуль скорости т, связанный с изменением энергии активации микрообъема ( т / ( / а, где а. С макроскопической точки зрения т характеризует собой зависимость между установившейся скоростью неупругой деформации и напряжением, соответствующим этой скорости.  [9]

Модуль скорости равен модулю производной от закона движения точки по времени.  [10]

Модуль скорости т, входящий в уравнение ( 40), представляет собой величину, равную k Т la, где а — константа, связанная с характеристиками микрочастиц, т характеризует зависимость между установившейся скоростью высокоэластической деформации и соответствующим этой скорости напряжением.

Количественная интерпретация этой константы связана с изменением величины максимального напряжения, вызванного увеличением скорости деформирования в е раз.

Модуль скорости практически не зависит от конформации полимерной цепи и от структуры полимера, подразумевая под этим более крупные надмолекулярные образования.  [11]

Модуль скорости т, входящий в уравнение ( 40), представляет собой величину, равную kTIa, где а — константа, связанная с характеристиками микрочастиц, т характеризует зависимость между установившейся скоростью высокоэластической деформации и соответствующим этой скорости напряжением.

Количественная интерпретация этой константы связана с изменением величины максимального напряжения, вызванного увеличением скорости деформирования в е раз.

Модуль скорости практически не зависит от конформации полимерной цепи и от структуры полимера, подразумевая под этим более крупные надмолекулярные образования.  [12]

Зависимость параметров труб круглого сечения от наполнения.  [13]

Модуль скорости w имеет ту же единицу измерения, что и скорость; модуль расхода К-ту же единицу измерения, что и расход.  [14]

Модуль скорости равен геометрической сумме ее составляющих.  [15]

Страницы:      1    2    3    4

Источник: http://www.ngpedia.ru/id160862p1.html

Ускорение

«Класс!ная физика» — на Youtube

«Физика — 10 класс»

Как изменяются показания спидометра в начале движения и при торможении автомобиля?Какая физическая величина характеризует изменение скорости?

При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо жеодновременно как по модулю, так и по направлению.

Скорость шайбы, скользящей по льду, уменьшается с течением времени до полной остановки. Если взять в руки камень и разжать пальцы, то при падении камня его скорость постепенно нарастает.

Скорость любой точки окружности точильного круга при неизменном числе оборотов в единицу времени меняется только по направлению, оставаясь постоянной по модулю (рис 1.26).

Если бросить камень под углом к горизонту, то его скорость будет меняться и по модулю, и по направлению.

Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении).

Физическая величина, характеризующая быстроту изменения скорости, называется ускорением.

Рассмотрим случай криволинейного и неравномерного движения точки. В этом случае её скорость с течением времени изменяется как по модулю, так и по направлению.

Пусть в некоторый момент времени t точка занимает положение М и имеет скорость (рис. 1.27). Спустя промежуток времени Δt точка займёт положение М1 и будет иметь скорость 1. Изменение скорости за время Δt1 равно Δ1 = 1 — .

Вычитание вектора можно произвести путём прибавления к вектору 1 вектора (-):

Δ1 = 1 — = 1 + (-).

Согласно правилу сложения векторов вектор изменения скорости Δ1 направлен из начала вектора 1 в конец вектора (-), как это показано на рисунке 1.28.

Поделив вектор Δ1 на промежуток времени Δt1 получим вектор, направленный так же, как и вектор изменения скорости Δ1. Этот вектор называют средним ускорением точки за промежуток времени Δt1. Обозначив его через cр1, запишем:

По аналогии с определением мгновенной скорости определим мгновенное ускорение. Для этого найдём теперь средние ускорения точки за всё меньшие и меньшие промежутки времени:

При уменьшении промежутка времени Δt вектор Δ уменьшается по модулю и меняется по направлению (рис. 1.29). Соответственно средние ускорения также меняются по модулю и направлению.

Но при стремлении промежутка времени Δt к нулю отношение изменения скорости к изменению времени стремится к определённому вектору как к своему предельному значению.

В механике эту величину называют ускорением точки в данный момент времени или просто ускорением и обозначают .

Ускорение точки — это предел отношения изменения скорости Δ к промежутку времени Δt, в течение которого это изменение произошло, при стремлении Δt к нулю.

Ускорение направлено так, как направлен вектор изменения скорости Δ при стремлении промежутка времени Δt к нулю.

В отличие от направления скорости, направление вектора ускорения нельзя определить, зная траекторию точки и направление движения точки по траектории.

В дальнейшем на простых примерах мы увидим, как можно определить направление ускорения точки при прямолинейном и криволинейном движениях.

В общем случае ускорение направлено под углом к вектору скорости (рис. 1.30). Полное ускорение характеризует изменение скорости и по модулю, и по направлению. Часто полное ускорение считается равным векторной сумме двух ускорений — касательного (к) и центростремительного (цс).

Касательное ускорение к характеризует изменение скорости по модулю и направлено по касательной к траектории движения. Центростремительное ускорение цс характеризует изменение скорости по направлению и перпендикулярно касательной, т. е. направлено к центру кривизны траектории в данной точке.

В дальнейшем мы рассмотрим два частных случая: точка движется по прямой и скорость изменяется только по модулю; точка движется равномерно по окружности и скорость изменяется только по направлению.

Единица ускорения.

Движение точки может происходить как с переменным, так и с постоянным ускорением. Если ускорение точки постоянно, то отношение изменения скорости к промежутку времени, за которое это изменение произошло, будет одним и тем же для любого интервала времени. Поэтому, обозначив через Δt некоторый произвольный промежуток времени, а через Δ — изменение скорости за этот промежуток, можно записать:

Так как промежуток времени Δt — величина положительная, то из этой формулы следует, что если ускорение точки с течением времени не изменяется, то оно направлено так же, как и вектор изменения скорости. Таким образом, если ускорение постоянно, то его можно истолковать как изменение скорости в единицу времени. Это позволяет установить единицы модуля ускорения и его проекций.

Запишем выражение для модуля ускорения:

Отсюда следует, что: модуль ускорения численно равен единице, если за единицу времени модуль вектора изменения скорости изменяется на единицу.

Если время измерено в секундах, а скорость — в метрах в секунду, то единица ускорения — м/с2 (метр на секунду в квадрате).

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Следующая страница «Движение с постоянным ускорением»Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Кинематика — Физика, учебник для 10 класса — Класс!ная физика

Физика и познание мира — Что такое механика — Механическое движение. Система отсчёта — Способы описания движения — Траектория. Путь. Перемещение — Равномерное прямолинейное движение. Скорость.

Уравнение движения — Примеры решения задач по теме «Равномерное прямолинейное движение» — Сложение скоростей — Примеры решения задач по теме «Сложение скоростей» — Мгновенная и средняя скорости — Ускорение — Движение с постоянным ускорением — Определение кинематических характеристик движения с помощью графиков — Примеры решения задач по теме «Движение с постоянным ускорением» — Движение с постоянным ускорением свободного падения — Примеры решения задач по теме «Движение с постоянным ускорением свободного падения» — Равномерное движение точки по окружности — Кинематика абсолютно твёрдого тела. Поступательное и вращательное движение — Кинематика абсолютно твёрдого тела. Угловая скорость. Связь между линейной и угловой скоростями — Примеры решения задач по теме «Кинематика твёрдого тела»

Устали? — Отдыхаем!

Вверх

Источник: http://class-fizika.ru/10_a10.html

Ускорение

Скачать все статьи раздела КИНЕМАТИКА

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится.

Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление».

Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где– вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ=-0 (здесь0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость0. В момент времени t2 тело имеет скорость. Согласно правилу вычитания векторов найдём вектор изменения скорости Δ=-0. Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с2, то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δпри очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то естьv2 > v1а направление вектора ускорения совпадает с вектором скорости2.

Если скорость тела по модулю уменьшается, то есть v2 замедление движения, при этом ускорение будет отрицательным (а

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускоренияτ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквойn.

Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

= τ + n

Источник: http://av-physics.narod.ru/mechanics/acceleration.htm

__________________________________________

novpedkolledg2.ru

Модуль вектора ускорения

. (1.12)

Вектор ускорения можно разложить на два вектора (рис. 1.6) .

Составляющая ускорения, характеризующая изменение мгновенной скорости по величине, называется касательным (тангенциальным) ускорением .

Составляющая ускорения, направленная к центру кривизны траектории и характеризующая изменение вектора скорости по направлению, называется нормальным ускорением .

Вектор полного ускорения

, (1.13)

а его модуль

. (1.14)

Для самостоятельного изучения

Модули касательного и нормального ускорения находятся из соотношения

, (1.15)

где единичный вектор, направленный по касательной к точке траектории в сторону движения в сторону движения м.т. (рис 1.7), а- вектор мгновенной скорости .

Первое слагаемое в (1.15) равно касательному ускорению,

,

второе - нормальному

(1.16)

Вектор касательного ускорения может совпадать с вектором мгновенной скорости () и может быть ему антипараллелен (). В первом случае движение будет ускоренным, а во втором – замедленным.

Рассмотрим перемещение материальной точки по траектории из точки в точку. (рис 1.7) За малый интервал времениединичный вектор в точке А2 равен сумме

,

где – единичный вектор, определяющий направление движения в точке А1, – вектор изменения направления движения. Треугольник , образованный векторами и ,равнобедренный, т.к. =1. При , угол между векторами и уменьшается истремится к нулю, а угол между векторами и увеличится до . Следовательно, вектора и направлены к центру кривизны траектории и совпадает с вектором нормали к скорости ().

Модуль вектора нормального ускорения определяется из треугольников и DC. Эти треугольники равнобедренные и подобные, т.к. при где – радиус кривизны траектории. Из соотношения сторон треугольников

. (1.17)

Для бесконечного малого интервала времени ,

Вектор можно представить в виде .Тогда вектор нормального ускорения

,

. (1.18)

Задания для самоконтроля знаний.

  1. Дайте определение средней и мгновенной скорости.

  2. Совпадают ли векторы средней и мгновенной скорости материальной точки, движущейся по окружности?

  3. Определите физический смысл понятий скорости и ускорения движения материальной точки.

  4. Запишите выражения для векторов скорости и ускорения материальной точки в декартовой системе координат.

  5. Определите модуль вектора скорости и ускорения в декартовой системе координат.

  6. Дайте определение тангенциального, нормального и полного ускорения.

  7. Определите модуль вектора ускорения движения точки по окружности радиусом R=1м, в момент времени t=2с от начала движения, если зависимость модуля вектора скорости от времени задается уравнением .

Лекция 2

studfiles.net

Вопросы к экзамену

Вопросы к экзамену (зачету).

  1. Кинематика поступательного движения МТ. Векторный способ описания движения. Радиус-вектора. Путь и перемещение. Скорость и ускорение.

Кинематика изучает движение тел, не рассматривая причины, которые обуславливают это движение, т. е. в ней дается только математическое описание механического движения тел безотносительно к причинам, вызывающих конкретный вид движения.

Кинематика изучает механическое движение тела без рассмотрения причин вызывающих и изменяющих это движение.

Тело отсчета – это тело по отношению к которому определяется положение других тел.

Системой отсчета называется система координат, снабженная часами и жестко связанная с телом отсчета, по отношению к которому определяется положение других тел в различные моменты времени.

Векторный способ описания движения основывается на задании радиус-вектора материальной точки (м.т.).

Радиус-вектор – это вектор, соединяющий начало координат с положением материальной точки в данный момент времени.

Приращение радиус-вектора называется вектором перемещения м.т.

Перемещение – это вектор, соединяющий начальное и конечное положение материальной точки:

– пройденный путь.

Вектор перемещения направлен вдоль хорды, стягивающей соответствующий участок траектории в случае криволинейного движения.

Скорость.

Скорость определяет быстроту, и направление движения материальной точки в данный момент времени.

Скорость – ВФВ, характеризующая процесс изменения пространственного положения движущейся материальной точки равная перемещению, совершаемому точкой за единицу времени.

Различают:

1) среднюю скорость;

2) мгновенную скорость;

3) среднюю путевую скорость.

Средняя скорость.

Средняя скорость - ВФВ, характеризующая быстроту движения на данном участке и равная отношению приращения радиус-вектора к рассматриваемому промежутку времени Dt:

Вектор средней скорости всегда совпадает по направлению с вектором перемещения:

Размерность скорости [u] = 1 м/с

При неограниченном уменьшении промежутка времени Δt средняя скорость стремиться к предельному значению, которое называется мгновенной скоростью.

Мгновенная скорость u – ВФВ, характеризующая быстроту движения в данный момент времени и равная пределу отношения приращения радиус-вектора к бесконечно малому промежутку времени Δt, в течение которого это приращение произошло:

Вектор мгновенной скорости u разложим на три составляющие по координатным осям:

Проекции вектора скорости:

Модуль вектора скорости :

Направление вектора совпадает с направлением вектора элементарного перемещения точки , т. е. он направлен всегда по касательной к траектории.

По мере уменьшения Δt путь Δl все больше будет приближаться к , поэтому модуль мгновенной скорости равен первой производной пути по времени:

Средняя путевая скорость – СФВ, характеризующая среднюю быстроту изменения со временем пути и равная отношению пройденного пути Δl ко времени Δt, за которое этот путь был пройден:

где l – путь, пройденный точкой за время t.

Для криволинейного движения: , т.к.

Для прямолинейного движения: ,т.к. .

Ускорение.

Быстроту изменения скорости с течением времени характеризует величина называемая ускорением.

Ускорение – ВФВ, характеризующая процесс изменения скорости с течением времени и равная приращению скорости за единицу времени.

Различают среднее и мгновенное ускорения.

Среднее ускорение.

Среднее ускорение – ВФВ, характеризующая среднюю быстроту изменения скорости м.т. на всем пути и равная отношению приращения скорости к промежутку времени, в течение которого это произошло.

Ускорение имеет размерность [a] = 1 м/с2

Мгновенное ускорение – ВФВ, характеризующая быстроту изменения скорости в данный момент времени и равная пределу отношения приращения скорости к бесконечно малому промежутку времени, в течение которого это приращение произошло:

Таким образом, ускорение равно первой производной скорости по времени t, или второй производной радиус-вектора по времени t.

Вектор мгновенного ускорения разложим на три составляющие по координатным осям x, y, z:

Проекция вектора ускорения на координатные оси:

Модуль вектора ускорения :

Вывод: определение скорости и ускорения сводится к чисто математической задаче вычисления первой и второй производных по времени радиуса вектора этой точки.

Кинематика поступательного движения твердого тела МТ.

Поступательное движение является простейшим видом механического движения твердого тела, при котором прямая, соединяющая любые две точки этого тела, перемещаясь вместе с телом, остается параллельной своему первоначальному направлению.

Где - радиусы-векторы точек А, В, С и произвольной точки М тела.

Следовательно,

Вывод: из этих соотношений следует, что для кинематического описания поступательного движения твердого тела и МТ достаточно рассмотреть движение какой либо одной его точки.

  1. Координатный и естественный способы описания движения. Проекция. Тангенциальное и нормальное ускорение.

Координатный способ.

Координатный способ задает положение тела в пространстве с помощью координат тела.

Переход от векторного описания движения к координатному осуществляется путем проектирования.

Проекции радиус-вектора на координатные оси равны соответствующим координатам м.т.:

rx = x; ry = y; rz = z.

Обратный переход осуществляется с помощью теоремы Пифагора и направляющих косинусов:

Направляющие косинусы:

Числом степеней свободы называется число независимых координат, полностью определяющих положение точки (тела) в пространстве относительно выбранной системы отсчета.

Законом движения материальной точки называется уравнение, выражающее зависимость ее радиуса-вектора от времени:

Спроектировав данное уравнение на оси координат, тогда зададим движение тела в прямоугольной (декартовой) системе координат:

Данные уравнения кинематическими уравнениями движения материальной точки.

Траекторией называется линия, которую описывает материальная точка при своем движении относительно выбранной системы отсчет.

Естественный способ описания движения.

В основу естественного способа описания движения положено уравнение траектории или пути, проходимого телом.

Естественный способ описания движения позволяет «привязать» описание движения к его траектории. В основе этого способа лежит естественная тройка векторов – вектор тангенциали , вектор нормали и вектор бинормали .

Вектор тангенциали - это вектор, касательный к траектории в данной точке.

Вектор нормали - это вектор, направленный из данной точки к центру кривизны траектории.

Вектор бинормали - это вектор, являющиеся векторным произведением тангенциали и вектора нормали .

Векторы , , образуют правовинтовую систему. Она также является правой прямоугольной (декартовой) системой координат.

Если , то векторы станут ортами соответствующих осях.

Скорость точки при естественном способе описания движения.

Движение точки задано естественным способом, т. е. известна траектория точки и закон ее движения по этой траектории . Вычислим скорость этой точки.

Воспользуемся определением скорости:

Правую часть до множим и разделим на ds. Получим:

Где - модуль скорости движущейся точки.

-единичный вектор тангенциали, направлен по касательной к траектории в

данной точке. Запишем:

Ускорение точки при естественном способе описания движения.

Траектория точки – плоская кривая, то ускорение точки лежит в данной плоскости.

Вектор полного ускорения удобно разложить на две составляющие вдоль этих направлений:

У плоскости имеются два направления – касательное к траектории (вектор тангенциали ) и главной нормали (вектор нормали ).

-называется тангенциальным ускорением;

-называется нормальным ускорением (центростремительным ускорением) ;

-называется вектором полного ускорения.

Ввиду малости этого участка траектории его можно считать совпадающим с соответствующим участком соприкасающейся окружности радиусом R с центром в точке О, которому соответствует центральный угол:

При перемещении по траектории на малое расстояние ds единичный вектор касательной поворачивается на угол dα.

Ввиду малости dα следует:

По направлением вектор совпадает с единичным вектором главной нормали .

Таким образом,

Для полного ускорения уравнение можно записать в виде:

Для нахождения тангенциального и нормального ускорения воспользуемся формулой для скорости при естественном способе описании движения точки:

Следовательно,

Где -приращение орта касательной к траектории, соответствующее элементарному пути проходимому точкой.

Модуль полного ускорения точки рассчитывается по формуле:

При криволинейном движении точки вектора его полного ускорения всегда отклонен от касательной траектории в сторону ее вогнутости.

Движение точки можно классифицировать в зависимости от тангенциальной и нормальной составляющих ускорения следующим образом:

  1. И - движение прямолинейное равномерное;

  2. И - движение прямолинейное равнопеременное;

  3. И - движение прямолинейное с переменным ускорением;

  4. И - движение по окружности с постоянной скорости;

  5. И - движение равномерное криволинейное;

  6. И - движение равнопеременное криволинейное;

  7. И - движение криволинейное с переменным ускорением.

3.Кинематика вращательного движения МТ. Угловые характеристики движения. Связь между линейными и угловыми величинами.

Кинематика вращательного движения твердого тела и МТ .

А)Вращательным движением твердого тела называется движение, при котором все его точки движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения.

Ось вращения может проходить как через вращающееся тело, так и находиться вне этого тела.

Вращающееся тело имеет одну степень свободы вокруг неподвижной оси.

Положение тела в пространстве определяется значением угла поворота вокруг оси вращения.

Б) Угловое перемещение.

Рассмотрим вращение м.т. по окружности радиуса R.

Пусть в начальный момент времени t0 м.т. находится в положении M и ее скорость равна u0.

Спустя промежуток времени dt = t1 – t0 м.т. пройдет по окружности путь l и окажется в положении M1.

Радиус-вектор точки, проведенный из центра O окружности, повернется на угол j.

Угол j называется угловым путем (углом поворота).

Размерность углового пути [j] = 1 рад.

Из геометрии известно, что длина дуги, на которую опирается центральный угол MOM1, равна: l = jR

Положение тела в пространстве полностью определяется значением угла поворота вокруг оси вращения из некоторого, условно выбранного начального положения этого тела.

Для описания вращательного движения тела неудобно пользоваться понятиями кинематики, как: перемещение; пройденный путь; скорость и ускорение.

В случае вращательного движения мерой перемещения всего тела за малый промежуток времени dt служит вектор элементарного угла поворота тела .

По модулю вектор элементарного угла поворота равен углу dφ поворота тела вокруг его оси вращения за время dt и направлен вдоль этой оси по правилу правого винта (правилу буравчика).

В) Правило правого винта (правило буравчика):

Если вращательное движение буравчика с правой нарезкой совпадает с направлением вращения, то поступательное движение острия буравчика укажет направление вектора элементарного угла поворота (вектора углового перемещения).

Направление вращения м.т. по окружности задается с помощью вектора углового перемещения .

Модуль вектора углового перемещения равен угловому пути j м.т. , а направление вектора углового перемещения подчиняется правилу буравчика.

Угловой путь j и модуль вектора углового перемещения измеряются в радианах.

При вращательном движении наряду с линейными величинами вводят угловые величины.

К ним относят: угловой путь j, угловое перемещение , угловую скорость , угловое ускорение и др.

Большинство из векторных угловых величин относятся к классу аксиальных (axe (лат.) – ось) векторов.

Аксиальные векторы (псевдовекторы) – это векторы, характеризующие вращение.

В отличие от полярных векторов аксиальные вектора всегда направлены вдоль оси вращения и не имеют конкретной точки приложения. При переходе от правой системы координат к левой псевдовектора изменяют свое направление на противоположное.

Полярные вектора при переходе от правой системы координат к левой всегда сохраняют свое направление неизменным.

Векторное произведение двух полярных векторов дают псевдовектор.

Аксиальные векторы могут быть отложены от любой точки на оси вращения.

Угловая скорость.

Угловая скорость – ВФВ, характеризующая быстроту поворота и равная пределу отношения приращения вектора углового перемещения к бесконечно малому промежутку времени, в течение которого это приращение произошло:

Размерность угловой скорости [w] = 1 рад/с

Угловая скорость является псевдовектором (аксиальным вектором) как и угловое перемещение.

Угловая скорость направлена вдоль оси вращения и ее направление всегда совпадает с направлением вектора углового перемещения

Направление вектора угловой скорости определяется правилом правого винта (правилом буравчика).

Вращение тела вокруг неподвижной оси называется равномерным, если модуль угловой скорости постоянен:

В случае равномерного вращения угол поворота тела прямо пропорционален времени его вращения t:

При равномерном вращении угловая скорость ω показывает, на какой угол поворачивается тело за единицу времени.

Для характеристики равномерного вращения вводятся две величины – период T обращения и частота n обращения.

Период T обращения – это время за которое тело делает один полный оборот.

Размерность периода обращения [T ] = 1 с

Найдем связь периода T обращения с угловой скоростью.

Величина равная обратной величиной периода вращения (обращения) называется частотой вращения или числом оборотом в единицу времени.

Частота n обращения – это число оборотов совершаемое телом за единицу времени, равномерно вращающегося с угловой скоростью .

Размерность частоты обращения [n] = 1 с-1

Частота n обращения обратно периоду T обращения:

Угловая скорость связана с частотой обращения по формуле:

Угловое ускорение.

Угловое ускорение – ВФВ, характеризующая быстроту изменения вектора угловой скорости и равная пределу отношения приращения вектора угловой скорости к бесконечно малому промежутку времени , в течение которого произошло приращение скорости:

Угловое ускорение является псевдовектором (аксиальным вектором) как угловая скорость и угловое перемещение.

Размерность углового ускорения [e ] = 1 рад/с2.

Вектор углового ускорения может принимать всего два направления:

  1. Если (ускоренное вращение), то

  1. Если (замедленное вращение), то

Связь между линейными и угловыми величинами.

Найдем скорость υ произвольной точки N тела.

Радиус-вектор точки N равен:

Перемещаясь по дуге окружности точка N проходит путь:

Модуль скорости точки N:

Учитывая, векторы R и ω взаимно перпендикулярны и вектор скорости υ точки N направлен перпендикулярно обоим этим векторам, можем написать:

Так как векторы и коллинеарные, тогда формулу можно переписать в виде:

В отличие от угловой скорости тела ω скорость υ часто называют линейной скоростью точки N тела. Вектор υ направлен по правилу правого винта.

Найдем ускорение точки N тела вращающегося вокруг неподвижной оси.

Или

Первый член в правой части этой формулы представляет собой касательное (тангенциальное) ускорение аτ точки N:

второй – нормальное ускорение аn точки N:

Минус в последней формуле стоит потому, что векторы аn и R имеют противоположные направления.

В более общем виде эти выражения можно записать в векторном виде:

здесь - радиус-вектор м.т., проведенный из центра окружности. Его модуль равен радиусу вращения:

Выразим полное ускорение точки через угловые величины.

4.Прямолинейное равномерное движение. Прямолинейное равнопеременное движение.

Прямолинейное движение – это механическое движение, при котором вектор перемещение не меняется по направлению и по величине длине пути пройденного телом.

Равномерным движением называется движение, при котором за любые равные промежутки времени точка проходит одинаковые расстояния, при этом ее вектор скорости не изменяется по величине и он не меняет своего направления.

Скорость постоянная, т. е.

studfiles.net

Равноускоренное движение, вектор ускорения, направление, перемещение. Формулы, определение, законы

Тестирование онлайн

Равноускоренное движение

В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению, неравномерное движение - это движение с неодинаковой скоростью, по любой траектории. В чем особенность равноускоренного движения? Это неравномерное движение, но которое "равно ускоряется". Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово "равно", получим равное увеличение скорости. А как понимать "равное увеличение скорости", как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.

Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую - 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью - замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

Равноускоренное движение - это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

Ускорение тела

Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение - это физическая векторная величина, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй - 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды - 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.

Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Формула записана не в векторном виде, поэтому знак "+" пишем, когда тело ускоряется, знак "-" - когда замедляется.

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках

На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.

На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на "-2м/с". 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком "минус"!!!

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах

Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

1) Что такое равноускоренное движение;2) Что характеризует ускорение;3) Ускорение - вектор. Если тело разгоняется ускорение положительное, если замедляется - ускорение отрицательное;3) Направление вектора ускорения;4) Формулы, единицы измерения в СИ

Упражнения

Два поезда идут навстречу друг другу: один - ускоренно на север, другой - замедленно на юг. Как направлены ускорения поездов?

Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго - противоположное движению (он замедляется).

Поезд движется равноускоренно с ускорением a (a>0). Известно, что к концу четвертой секунды скорость поезда равна 6м/с. Что можно сказать о величине пути, пройденном за четвертую секунду? Будет ли этот путь больше, меньше или равен 6м?

Так как поезд движется с ускорением, то скорость его все время возрастает (a>0). Если к концу четвертой секунды скорость равна 6м/с, то в начале четвертой секунды она была меньше 6м/с. Следовательно, путь, пройденный поездом за четвертую секунду, меньше 6м.

Какие из приведенных зависимостей описывают равноускоренное движение?

Уравнение скорости движущегося тела . Каково соответствующее уравнение пути?

*Автомобиль прошел за первую секунду 1м, за вторую секунду 2м, за третью секунду 3м, за четвертую секунду 4м и т.д. Можно ли считать такое движение равноускоренным?

В равноускоренном движении пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел. Следовательно, описанное движение не равноускоренное.

fizmat.by