Дискриминант. Дискриминант алгебра


Как решать квадратные уравнения? Дискриминант. — МегаЛекции

 

Поработаем с квадратными уравнениями. Это очень популярные уравнения! В самом общем виде квадратное уравнение выглядит так:

Например:

Здесь а =1; b = 3; c = -4

Или:

Здесь а =2; b = -0,5; c = 2,2

Или:

Здесь а =-3; b = 6; c = -18

Ну, вы поняли…

Как решать квадратные уравнения? Если перед вами квадратное уравнение именно в таком виде, дальше уже всё просто. Вспоминаем волшебное слово дискриминант. Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении. Итак, формула для нахождения корней квадратного уравнения выглядит так:

Выражение под знаком корня – и есть тот самый дискриминант. Как видим, для нахождения икса, мы используем только a, b и с. Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в это формулу и считаем. Подставляем со своими знаками! Например, для первого уравнения а =1; b = 3; c = -4. Вот и записываем:

Пример практически решён:

Вот и всё.

Какие случаи возможны при использовании этой формулы? Всего три случая.

1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

2. Дискриминант равен нулю. Тогда у вас одно решение. Строго говоря, это не один корень, а два одинаковых. Но это играет роль в неравенствах, там мы поподробнее вопрос изучим.

3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же… Самые распространённые ошибки – путаница со знаками значений a, b и с. Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте!

Предположим, надо вот такой примерчик решить:

Здесь a = -6; b = -5; c = -1

Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится. Вот и пишем подробно, со всеми скобочками и знаками:

Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

Итак, как решать квадратные уравнения через дискриминант мы вспомнили. Или научились, что тоже неплохо. Умеете правильно определять a, b и с. Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

Однако частенько квадратные уравнения выглядят слегка иначе. Например, вот так:

Или так:

Это неполные квадратные уравнения. Их тоже можно решать через дискриминант. Надо только правильно сообразить, чему здесь равняются a, b и с.

Сообразили? В первом примере a = 1; b = -4; а c? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с, а b !

Но неполные квадратные уравнения можно решать гораздо проще. Безо всякого дискриминанта. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!Не получается? То-то…Следовательно, можно уверенно записать: х = 0, или х = 4

Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем через дискриминант.

Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

Остаётся корень извлечь из 9, и всё. Получится:

Тоже два корня. х = +3 и х = -3.

Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

Приём первый. Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?Допустим, после всяких преобразований вы получили вот такое уравнение:

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1, проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком. Если не получилось – значит уже где-то накосячили. Ищите ошибку. Если получилось - надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b, который перед иксом, равен -1. Значит, всё верно!Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

Приём третий. Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в предыдущем разделе. При работе с дробями ошибки, почему-то так и лезут…

Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

Вот и всё! Решать – одно удовольствие!

Итак, подытожим тему.

Практические советы:

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно.

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

Дробные уравнения. ОДЗ.

 

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения. Или их ещё называют гораздо солиднее – дробные рациональные уравнения. Это одно и то же.

 

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе. Хотя бы в одном. Например:

Или:

Напомню, если в знаменателях только числа, это линейные уравнения.

Как решать дробные уравнения? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2). Умножаем:

Это обычное умножение дробей, но распишу подробно:

Обратите внимание, я пока не раскрываю скобку (х + 2)! Так, целиком, её и пишу:

В левой части сокращается целиком (х+2), а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

А это уравнение уже решит всякий! х = 2.

Решим ещё один пример, чуть посложнее:

Если вспомнить, что 3 = 3/1, а 2х = 2х/1, можно записать:

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2). А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

А вот теперь уже раскрываем скобки:

Приводим подобные, переносим всё в левую часть и получаем:

Классическое квадратное уравнение. Но минус впереди – нехорош. От него можно всегда избавиться, умножением или делением на -1. Но если присмотреться к примеру, можно заметить, что лучше всего это уравнение разделить на -2! Одним махом и минус исчезнет, и коэффициенты посимпатичнее станут! Делим на -2. В левой части – почленно, а в правой – просто ноль делим на -2, ноль и получим:

Решаем через дискриминант и проверяем по теореме Виета. Получаем х = 1 и х = 3. Два корня.

Как видим, в первом случае уравнение после преобразования стало линейным, а здесь – квадратным. Бывает так, что после избавления от дробей, все иксы сокращаются. Остаётся что-нибудь, типа 5=5. Это означает, что икс может быть любым. Каким бы он не был, всё равно сократится. И получится чистая правда, 5=5. Но, после избавления от дробей, может получиться и совсем неправда, типа 2=7. А это означает, что решений нет! При любом иксе получается неправда.

Осознали главный способ решения дробных уравнений? Он прост и логичен. Мы меняем исходное выражение так, чтобы исчезло всё то, что нам не нравится. Или мешает. В данном случае это – дроби. Точно так же мы будем поступать и со всякими сложными примерами с логарифмами, синусами и прочими ужасами. Мы всегда будем от всего этого избавляться.

Однако менять исходное выражение в нужную нам сторону надо по правилам, да… Освоение которых и есть подготовка к ЕГЭ по математике. Вот и осваиваем.

Сейчас мы с вами научимся обходить одну из главных засад на ЕГЭ! Но для начала посмотрим, попадаете вы в неё, или нет?

Разберём простой пример:

Дело уже знакомое, умножаем обе части на (х – 2), получаем:

Напоминаю, со скобками (х – 2) работаем как с одним, цельным выражением!

Здесь я уже не писал единичку в знаменателях, несолидно… И скобки в знаменателях рисовать не стал, там кроме х – 2 ничего нет, можно и не рисовать. Сокращаем:

Раскрываем скобки, переносим всё влево, приводим подобные:

Решаем, проверяем, получаем два корня. х = 2 и х = 3. Отлично.

Предположим в задании сказано записать корень, или их сумму, если корней больше одного. Что писать будем?

Если решите, что ответ 5, – вы попали в засаду. И задание вам не засчитают. Зря трудились… Правильный ответ 3.

В чём дело?! А вы попробуйте проверку сделать. Подставить значения неизвестного в исходный пример. И если при х = 3 у нас всё чудненько срастётся, получим 9 = 9, то при х = 2 получится деление на ноль! Чего делать нельзя категорически. Значит х = 2 решением не является, и в ответе никак не учитывается. Это так называемый посторонний или лишний корень. Мы его просто отбрасываем. Окончательный корень один. х = 3.

Как так?! – слышу возмущённые возгласы. Нас учили, что уравнение можно умножать на выражение! Это тождественное преобразование!

Да, тождественное. При маленьком условии – выражение, на которое умножаем (делим) – отлично от нуля. А х – 2 при х = 2 равно нулю! Так что всё честно.

И что теперь делать?! Не умножать на выражение? Каждый раз проверку делать? Опять непонятно!

Спокойно! Без паники!

В этой тяжелой ситуации нас спасут три магических буквы. Я знаю, о чем вы подумали. Правильно! Это ОДЗ. Область Допустимых Значений.

 

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

megalektsii.ru

Дискриминант - это... Что такое Дискриминант?

Дискримина́нт многочлена , есть произведение

, где  — все корни (с учётом кратностей) в некотором расширении основного поля, в котором они существуют.

Свойства

  • Дискриминант равен нулю тогда и только тогда, когда многочлен имеет кратные корни.
  • Дискриминант является симметрическим многочленом относительно корней многочлена и поэтому является многочленом от его коэффициентов; более того, коэффициенты этого многочлена целые независимо от расширения, в котором берутся корни.
  • , где  — результант многочлена и его производной .
    • В частности, дискриминант многочлена
равен, с точностью до знака, определителю следующей -матрицы:

Примеры

  • В частности, дискриминант многочлена (корни которого вычисляются по формуле Кардано) равен .

История

Термин образован от лат. discrimino — «разбираю», «различаю». Понятие «дискриминант квадратичной формы» использовалось в работах Гаусса, Дедекинда, Кронекера, Вебера и др. Термин ввёл Сильвестр[1].

Примечания

3dic.academic.ru

Дискриминант - это... Что такое Дискриминант?

Дискримина́нт многочлена , есть произведение

, где  — все корни (с учётом кратностей) в некотором расширении основного поля, в котором они существуют.

Свойства

  • Дискриминант равен нулю тогда и только тогда, когда многочлен имеет кратные корни.
  • Дискриминант является симметрическим многочленом относительно корней многочлена и поэтому является многочленом от его коэффициентов; более того, коэффициенты этого многочлена целые независимо от расширения, в котором берутся корни.
  • , где  — результант многочлена и его производной .
    • В частности, дискриминант многочлена
равен, с точностью до знака, определителю следующей -матрицы:

Примеры

  • В частности, дискриминант многочлена (корни которого вычисляются по формуле Кардано) равен .

История

Термин образован от лат. discrimino — «разбираю», «различаю». Понятие «дискриминант квадратичной формы» использовалось в работах Гаусса, Дедекинда, Кронекера, Вебера и др. Термин ввёл Сильвестр[1].

Примечания

med.academic.ru

Дискриминант - это... Что такое Дискриминант?

Дискримина́нт многочлена , есть произведение

, где  — все корни (с учётом кратностей) в некотором расширении основного поля, в котором они существуют.

Свойства

  • Дискриминант равен нулю тогда и только тогда, когда многочлен имеет кратные корни.
  • Дискриминант является симметрическим многочленом относительно корней многочлена и поэтому является многочленом от его коэффициентов; более того, коэффициенты этого многочлена целые независимо от расширения, в котором берутся корни.
  • , где  — результант многочлена и его производной .
    • В частности, дискриминант многочлена
равен, с точностью до знака, определителю следующей -матрицы:

Примеры

  • В частности, дискриминант многочлена (корни которого вычисляются по формуле Кардано) равен .

История

Термин образован от лат. discrimino — «разбираю», «различаю». Понятие «дискриминант квадратичной формы» использовалось в работах Гаусса, Дедекинда, Кронекера, Вебера и др. Термин ввёл Сильвестр[1].

Примечания

veter.academic.ru

Дискриминант - это... Что такое Дискриминант?

Дискримина́нт многочлена , есть произведение

, где  — все корни (с учётом кратностей) в некотором расширении основного поля, в котором они существуют.

Свойства

  • Дискриминант равен нулю тогда и только тогда, когда многочлен имеет кратные корни.
  • Дискриминант является симметрическим многочленом относительно корней многочлена и поэтому является многочленом от его коэффициентов; более того, коэффициенты этого многочлена целые независимо от расширения, в котором берутся корни.
  • , где  — результант многочлена и его производной .
    • В частности, дискриминант многочлена
равен, с точностью до знака, определителю следующей -матрицы:

Примеры

  • В частности, дискриминант многочлена (корни которого вычисляются по формуле Кардано) равен .

История

Термин образован от лат. discrimino — «разбираю», «различаю». Понятие «дискриминант квадратичной формы» использовалось в работах Гаусса, Дедекинда, Кронекера, Вебера и др. Термин ввёл Сильвестр[1].

Примечания

dikc.academic.ru

Дискриминант — WiKi

Дискримина́нт многочлена p(x)=a0+a1x+⋯+anxn{\displaystyle p(x)=a_{0}+a_{1}x+\cdots +a_{n}x^{n}}, an≠0{\displaystyle a_{n}\neq 0}, есть произведение

D(p)=an2n−2∏i<j(αi−αj)2{\displaystyle D(p)=a_{n}^{2n-2}\prod _{i<j}(\alpha _{i}-\alpha _{j})^{2}}, где α1,α2,…,αn{\displaystyle \alpha _{1},\alpha _{2},\ldots ,\alpha _{n}} — все корни многочлена (с учётом кратностей) в некотором расширении основного поля, в котором они существуют.

Чаще всего используется дискриминант квадратного трёхчлена[⇨], знак которого определяет количество действительных корней.

Во всех следующих примерах рассматриваются многочлены с вещественными коэффициентами и отличным от нуля старшим коэффициентом.

Многочлен второй степени

Дискриминант квадратного трёхчлена ax2+bx+c{\displaystyle ax^{2}+bx+c}  равен D=b2−4ac.{\displaystyle D=b^{2}-4ac.} 

  • При D>0{\displaystyle D>0}  вещественных корней — два, и они вычисляются по формуле
x1,2=−b±b2−4ac2a{\displaystyle x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}} .
  • При D=0{\displaystyle D=0}  корень один (в некоторых контекстах говорят также о двух равных или совпадающих корнях), кратности 2:
x=−b2a{\displaystyle x={\frac {-b}{2a}}} .
  • При D<0{\displaystyle D<0}  вещественных корней нет. Существуют два комплексных корня, выражающиеся той же формулой (1) (без использования извлечения корня из отрицательного числа), либо формулой
x1,2=−b±i4ac−b22a{\displaystyle x_{1,2}={\frac {-b\pm i{\sqrt {4ac-b^{2}}}}{2a}}} .

Многочлен третьей степени

Дискриминант кубического многочлена ax3+bx2+cx+d{\displaystyle ax^{3}+bx^{2}+cx+d}  равен

D=b2c2−4ac3−4b3d−27a2d2+18abcd.{\displaystyle D=b^{2}c^{2}-4ac^{3}-4b^{3}d-27a^{2}d^{2}+18abcd.} 

В частности, дискриминант кубического многочлена x3+px+q{\displaystyle x^{3}+px+q}  (корни которого вычисляются по формуле Кардано) равен −27q2−4p3{\displaystyle -27q^{2}-4p^{3}} .

  • При D>0{\displaystyle D>0}  кубический многочлен имеет три различных вещественных корня.
  • При D=0{\displaystyle D=0}  он имеет кратный корень (либо один корень кратности 2 и один корень кратности 1, и тот, и другой вещественные; либо один-единственный вещественный корень кратности 3).
  • При D<0{\displaystyle D<0}  кубический многочлен имеет один вещественный корень и два комплексных корня (являющихся комплексно-сопряженными).

Многочлен четвертой степени

Дискриминант многочлена четвертой степени ax4+bx3+cx2+dx+e{\displaystyle ax^{4}+bx^{3}+cx^{2}+dx+e}  равен

D=256a3e3−192a2bde2−128a2c2e2+144a2cd2e−27a2d4+144ab2ce2−6ab2d2e−80abc2de+18abcd3+16ac4e−4ac3d2−27b4e2+18b3cde−4b3d3−4b2c3e+b2c2d2.{\displaystyle {\begin{aligned}&D=256a^{3}e^{3}-192a^{2}bde^{2}-128a^{2}c^{2}e^{2}+144a^{2}cd^{2}e-27a^{2}d^{4}\\&+144ab^{2}ce^{2}-6ab^{2}d^{2}e-80abc^{2}de+18abcd^{3}+16ac^{4}e\\&-4ac^{3}d^{2}-27b^{4}e^{2}+18b^{3}cde-4b^{3}d^{3}-4b^{2}c^{3}e+b^{2}c^{2}d^{2}.\end{aligned}}} 

Для многочлена x4+qx2+rx+s{\displaystyle x^{4}+qx^{2}+rx+s}  дискриминант имеет вид

D=256s3−128q2s2+144qr2s−27r4+16q4s−4q3r2{\displaystyle D=256s^{3}-128q^{2}s^{2}+144qr^{2}s-27r^{4}+16q^{4}s-4q^{3}r^{2}} 

и равенство D=0{\displaystyle D=0}  определяет в пространстве (q,r,s){\displaystyle (q,r,s)}  поверхность, называемую ласточкиным хвостом.

  • При D<0{\displaystyle D<0}  многочлен имеет два различных вещественных корня и два комплексных корня.
  • При D>0{\displaystyle D>0}  многочлен имеет четыре различных корня: либо все вещественные, либо все комплексные.
А именно, для многочлена x4+qx2+rx+s{\displaystyle x^{4}+qx^{2}+rx+s} :[1]
  • При D=0{\displaystyle D=0}  многочлен имеет по меньшей мере один кратный корень (вещественный или комплексный). Во втором случае многочлен имеет два комплексно сопряженных кратных корня и, следовательно, распадается в произведение двух многочленов второй степени, неприводимых над полем вещественных чисел.
Точнее:[1]
  • если q<0{\displaystyle q<0}  и s>q24{\displaystyle s>{\frac {q^{2}}{4}}} , то один вещественный корень кратности 2 и два комплексных корня,
  • если q<0{\displaystyle q<0}  и −q212<s<q24{\displaystyle -{\frac {q^{2}}{12}}<s<{\frac {q^{2}}{4}}} , то три различных вещественных корня, один из которых кратности 2,
  • если q<0{\displaystyle q<0}  и s=q24{\displaystyle s={\frac {q^{2}}{4}}} , то два вещественных корня, каждый из которых кратности 2,
  • если q<0{\displaystyle q<0}  и s=−q212{\displaystyle s=-{\frac {q^{2}}{12}}} , то два вещественных корня, один из которых кратности 3,
  • если q>0{\displaystyle q>0} , s>0{\displaystyle s>0}  и r≠0{\displaystyle r\neq 0} , то один вещественный корень кратности 2 и два комплексных корня,
  • если q>0{\displaystyle q>0} , s=q24{\displaystyle s={\frac {q^{2}}{4}}}  и r=0{\displaystyle r=0} , то одна пара комплексно сопряженных корней кратности 2,
  • если q>0{\displaystyle q>0}  и s=0{\displaystyle s=0} , то один вещественный корень кратности 2 и два комплексных корня,
  • если q=0{\displaystyle q=0}  и s>0{\displaystyle s>0} , то один вещественный корень кратности 2 и два комплексных корня,
  • если q=0{\displaystyle q=0}  и s=0{\displaystyle s=0} , то один вещественный корень кратности 4.

ru-wiki.org

Дискриминант — Википедия РУ

Дискримина́нт многочлена p(x)=a0+a1x+⋯+anxn{\displaystyle p(x)=a_{0}+a_{1}x+\cdots +a_{n}x^{n}}, an≠0{\displaystyle a_{n}\neq 0}, есть произведение

D(p)=an2n−2∏i<j(αi−αj)2{\displaystyle D(p)=a_{n}^{2n-2}\prod _{i<j}(\alpha _{i}-\alpha _{j})^{2}}, где α1,α2,…,αn{\displaystyle \alpha _{1},\alpha _{2},\ldots ,\alpha _{n}} — все корни многочлена (с учётом кратностей) в некотором расширении основного поля, в котором они существуют.

Чаще всего используется дискриминант квадратного трёхчлена[⇨], знак которого определяет количество действительных корней.

Во всех следующих примерах рассматриваются многочлены с вещественными коэффициентами и отличным от нуля старшим коэффициентом.

Многочлен второй степени

Дискриминант квадратного трёхчлена ax2+bx+c{\displaystyle ax^{2}+bx+c}  равен D=b2−4ac.{\displaystyle D=b^{2}-4ac.} 

  • При D>0{\displaystyle D>0}  вещественных корней — два, и они вычисляются по формуле
x1,2=−b±b2−4ac2a{\displaystyle x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}} .
  • При D=0{\displaystyle D=0}  корень один (в некоторых контекстах говорят также о двух равных или совпадающих корнях), кратности 2:
x=−b2a{\displaystyle x={\frac {-b}{2a}}} .
  • При D<0{\displaystyle D<0}  вещественных корней нет. Существуют два комплексных корня, выражающиеся той же формулой (1) (без использования извлечения корня из отрицательного числа), либо формулой
x1,2=−b±i4ac−b22a{\displaystyle x_{1,2}={\frac {-b\pm i{\sqrt {4ac-b^{2}}}}{2a}}} .

Многочлен третьей степени

Дискриминант кубического многочлена ax3+bx2+cx+d{\displaystyle ax^{3}+bx^{2}+cx+d}  равен

D=b2c2−4ac3−4b3d−27a2d2+18abcd.{\displaystyle D=b^{2}c^{2}-4ac^{3}-4b^{3}d-27a^{2}d^{2}+18abcd.} 

В частности, дискриминант кубического многочлена x3+px+q{\displaystyle x^{3}+px+q}  (корни которого вычисляются по формуле Кардано) равен −27q2−4p3{\displaystyle -27q^{2}-4p^{3}} .

  • При D>0{\displaystyle D>0}  кубический многочлен имеет три различных вещественных корня.
  • При D=0{\displaystyle D=0}  он имеет кратный корень (либо один корень кратности 2 и один корень кратности 1, и тот, и другой вещественные; либо один-единственный вещественный корень кратности 3).
  • При D<0{\displaystyle D<0}  кубический многочлен имеет один вещественный корень и два комплексных корня (являющихся комплексно-сопряженными).

Многочлен четвертой степени

Дискриминант многочлена четвертой степени ax4+bx3+cx2+dx+e{\displaystyle ax^{4}+bx^{3}+cx^{2}+dx+e}  равен

D=256a3e3−192a2bde2−128a2c2e2+144a2cd2e−27a2d4+144ab2ce2−6ab2d2e−80abc2de+18abcd3+16ac4e−4ac3d2−27b4e2+18b3cde−4b3d3−4b2c3e+b2c2d2.{\displaystyle {\begin{aligned}&D=256a^{3}e^{3}-192a^{2}bde^{2}-128a^{2}c^{2}e^{2}+144a^{2}cd^{2}e-27a^{2}d^{4}\\&+144ab^{2}ce^{2}-6ab^{2}d^{2}e-80abc^{2}de+18abcd^{3}+16ac^{4}e\\&-4ac^{3}d^{2}-27b^{4}e^{2}+18b^{3}cde-4b^{3}d^{3}-4b^{2}c^{3}e+b^{2}c^{2}d^{2}.\end{aligned}}} 

Для многочлена x4+qx2+rx+s{\displaystyle x^{4}+qx^{2}+rx+s}  дискриминант имеет вид

D=256s3−128q2s2+144qr2s−27r4+16q4s−4q3r2{\displaystyle D=256s^{3}-128q^{2}s^{2}+144qr^{2}s-27r^{4}+16q^{4}s-4q^{3}r^{2}} 

и равенство D=0{\displaystyle D=0}  определяет в пространстве (q,r,s){\displaystyle (q,r,s)}  поверхность, называемую ласточкиным хвостом.

  • При D<0{\displaystyle D<0}  многочлен имеет два различных вещественных корня и два комплексных корня.
  • При D>0{\displaystyle D>0}  многочлен имеет четыре различных корня: либо все вещественные, либо все комплексные.
А именно, для многочлена x4+qx2+rx+s{\displaystyle x^{4}+qx^{2}+rx+s} :[1]
  • При D=0{\displaystyle D=0}  многочлен имеет по меньшей мере один кратный корень (вещественный или комплексный). Во втором случае многочлен имеет два комплексно сопряженных кратных корня и, следовательно, распадается в произведение двух многочленов второй степени, неприводимых над полем вещественных чисел.
Точнее:[1]
  • если q<0{\displaystyle q<0}  и s>q24{\displaystyle s>{\frac {q^{2}}{4}}} , то один вещественный корень кратности 2 и два комплексных корня,
  • если q<0{\displaystyle q<0}  и −q212<s<q24{\displaystyle -{\frac {q^{2}}{12}}<s<{\frac {q^{2}}{4}}} , то три различных вещественных корня, один из которых кратности 2,
  • если q<0{\displaystyle q<0}  и s=q24{\displaystyle s={\frac {q^{2}}{4}}} , то два вещественных корня, каждый из которых кратности 2,
  • если q<0{\displaystyle q<0}  и s=−q212{\displaystyle s=-{\frac {q^{2}}{12}}} , то два вещественных корня, один из которых кратности 3,
  • если q>0{\displaystyle q>0} , s>0{\displaystyle s>0}  и r≠0{\displaystyle r\neq 0} , то один вещественный корень кратности 2 и два комплексных корня,
  • если q>0{\displaystyle q>0} , s=q24{\displaystyle s={\frac {q^{2}}{4}}}  и r=0{\displaystyle r=0} , то одна пара комплексно сопряженных корней кратности 2,
  • если q>0{\displaystyle q>0}  и s=0{\displaystyle s=0} , то один вещественный корень кратности 2 и два комплексных корня,
  • если q=0{\displaystyle q=0}  и s>0{\displaystyle s>0} , то один вещественный корень кратности 2 и два комплексных корня,
  • если q=0{\displaystyle q=0}  и s=0{\displaystyle s=0} , то один вещественный корень кратности 4.

http-wikipediya.ru