Ось симметрии - что это такое? Фигуры, имеющие ось симметрии. Что значит ось симметрии


Оси симметрии. Фигуры, имеющие ось симметрии. Что такое вертикальная ось симметрии

Жизнь людей наполнена симметрией. Это удобно, красиво, не нужно выдумывать новых стандартов. Но что она есть на самом деле и так ли красива в природе, как принято считать?

Симметрия

С древних времен люди стремятся упорядочить мир вокруг себя. Поэтому что-то считается красивым, а что-то не очень. С эстетической точки зрения как привлекательные рассматриваются золотое и серебряное сечения, а также, разумеется, симметрия. Этот термин имеет греческое происхождение и дословно означает "соразмерность". Разумеется, речь идет не только о совпадении по этому признаку, но также и по некоторым другим. В общем смысле симметрия - это такое свойство объекта, когда в результате тех или иных образований результат равен исходным данным. Это встречается как в живой, так и в неживой природе, а также в предметах, сделанных человеком.

Прежде всего термин "симметрия" употребляется в геометрии, но находит применение во многих научных областях, причем его значение остается в общем и целом неизменным. Это явление достаточно часто встречается и считается интересным, поскольку различается несколько его видов, а также элементов. Использование симметрии также интересно, ведь она встречается не только в природе, но и в орнаментах на ткани, бордюрах зданий и многих других рукотворных предметах. Стоит рассмотреть это явление поподробнее, поскольку это крайне увлекательно.

Употребление термина в других научных областях

В дальнейшем симметрия будет рассматриваться с точки зрения геометрии, однако стоит упомянуть, что данное слово используется не только здесь. Биология, вирусология, химия, физика, кристаллография - все это неполный список областей, в которых данное явление изучается с различных сторон и в разных условиях. От того, к какой науке относится этот термин, зависит, например, классификация. Так, разделение на типы серьезно варьируется, хотя некоторые основные, пожалуй, остаются неизменными везде.

Классификация

Различают несколько основных типов симметрии, из которых наиболее часто встречаются три:

  • Зеркальная - наблюдается относительно одной или нескольких плоскостей. Также термин употребляется для обозначения типа симметрии, когда используется такое преобразование, как отражение.
  • Лучевая, радиальная или осевая - существует несколько вариантов в различных источниках, в общем смысле - симметрия относительно прямой. Может рассматриваться как частный случай вращательной разновидности.
  • Центральная - наблюдается симметричность относительно некой точки.

Кроме того, в геометрии различают также следующие типы, они встречаются значительно реже, но не менее любопытны:

  • скользящая;
  • вращательная;
  • точечная;
  • поступательная;
  • винтовая;
  • фрактальная;
  • и т. д.

В биологии все виды называются несколько иначе, хотя по сути могут быть такими же. Подразделение на те или иные группы происходит на основании наличия или отсутствия, а также количества некоторых элементов, таких как центры, плоскости и оси симметрии. Их следует рассмотреть отдельно и более подробно.

Базовые элементы

В явлении выделяют некоторые черты, одна из которых обязательно присутствует. Так называемые базовые элементы включают в себя плоскости, центры и оси симметрии. Именно в соответствии с их наличием, отсутствием и количеством определяется тип.

Центром симметрии называют точку внутри фигуры или кристалла, в которой сходятся линии, соединяющие попарно все параллельные друг другу стороны. Разумеется, он существует не всегда. Если есть стороны, к которым нет параллельной пары, то такую точку найти невозможно, поскольку ее нет. В соответствии с определением, очевидно, что центр симметрии - это то, через что фигура может быть отражена сама на себя. Примером может служить, например, окружность и точка в ее середине. Этот элемент обычно обозначается как C.

Плоскость симметрии, разумеется, воображаема, но именно она делит фигуру на две равные друг другу части. Она может проходить через одну или несколько сторон, быть параллельной ей, а может делить их. Для одной и той же фигуры может существовать сразу несколько плоскостей. Эти элементы обычно обозначаются как P.

Но, пожалуй, наиболее часто встречается то, что называют "оси симметрии". Это нередкое явление можно увидеть как в геометрии, так и в природе. И оно достойно отдельного рассмотрения.

Оси

Часто элементом, относительно которого фигуру можно назвать симметричной, выступает прямая или отрезок. В любом случае речь идет не о точке и не о плоскости. Тогда рассматриваются оси симметрии фигур. Их может быть очень много, и расположены они могут быть как угодно: делить стороны или быть параллельными им, а также пересекать углы или не делать этого. Оси симметрии обычно обозначаются как L.

Примерами могут служить равнобедренные и равносторонние треугольники. В первом случае будет вертикальная ось симметрии, по обе стороны от которой равные грани, а во втором линии будут пересекать каждый угол и совпадать со всеми биссектрисами, медианами и высотами. Обычные же треугольники ею не обладают.

Кстати, совокупность всех вышеназванных элементов в кристаллографии и стереометрии называется степенью симметрии. Этот показатель зависит от количества осей, плоскостей и центров.

Примеры в геометрии

Условно можно разделить все множество объектов изучения математиков на фигуры, имеющие ось симметрии, и такие, у которых ее нет. В первую категорию автоматически попадают все правильные многоугольники, окружности, овалы, а также некоторые частные случаи, остальные же попадают во вторую группу.

Как и в случае, когда говорилось про ось симметрии треугольника, данный элемент для четырехугольника существует не всегда. Для квадрата, прямоугольника, ромба или параллелограмма он есть, а для неправильной фигуры, соответственно, нет. Для окружности оси симметрии - это множество прямых, которые проходят через ее центр.

Кроме того, интересно рассмотреть и объемные фигуры с этой точки зрения. Хотя бы одной осью симметрии помимо всех правильных многоугольников и шара будут обладать некоторые конусы, а также пирамиды, параллелограммы и некоторые другие. Каждый случай необходимо рассматривать отдельно.

Примеры в природе

Зеркальная симметрия в жизни называется билатеральной, она встречается наиболее часто. Любой человек и очень многие животные тому пример. Осевая же называется радиальной и встречается гораздо реже, как правило, в растительном мире. И все-таки они есть. Например, стоит подумать, сколько осей симметрии имеет звезда, и имеет ли она их вообще? Разумеется, речь идет о морских обитателях, а не о предмете изучения астрономов. И правильным ответом будет такой: это зависит от количества лучей звезды, например пять, если она пятиконечная.

Кроме того, радиальная симметрия наблюдается у многих цветков: ромашки, васильки, подсолнухи и т. д. Примеров огромное количество, они буквально везде вокруг.

Аритмия

Этот термин, прежде всего, напоминает большинству о медицине и кардиологии, однако он изначально имеет несколько другое значение. В данном случае синонимом будет "асимметрия", то есть отсутствие или нарушение регулярности в том или ином виде. Ее можно встретить как случайность, а иногда она может стать прекрасным приемом, например, в одежде или архитектуре. Ведь симметричных зданий очень много, но знаменитая Пизанская башня чуть наклонена, и хоть она не одна такая, но это самый известный пример. Известно, что так получилось случайно, но в этом есть своя прелесть.

Кроме того, очевидно, что лица и тела людей и животных тоже не полностью симметричны. Проводились даже исследования, согласно результатам которых "правильные" лица расценивались как неживые или просто непривлекательные. Все-таки восприятие симметрии и это явление само по себе удивительны и пока не до конца изучены, а потому крайне интересны.

fb.ru

Ось симметрии - что это такое? Фигуры, имеющие ось симметрии

Что же такое ось симметрии? Это множество точек, которые образуют прямую, являющуюся основой симметрии, то есть, если от прямой отложили определенное расстояние с одной стороны, то оно отразится и в другую сторону в таком же размере. Осью может выступать все, что угодно, - точка, прямая, плоскость и так далее. Но об этом лучше говорить на наглядных примерах.

Симметрия

Для того чтобы понять, что такое ось симметрии, нужно вникнуть в само определение симметрии. Это соответствие определенного фрагмента тела относительно какой-либо оси, когда его структура неизменна, а свойства и форма такого объекта остаются прежними относительно его преобразований. Можно сказать, что симметрия - свойство тел к отображению. Когда фрагмент не может иметь подобного соответствия, это называется асимметрией или же аритмией.

Некоторые фигуры не имеют симметрии, поэтому они и называются неправильными или же асимметричными. К таким относятся различные трапеции (кроме равнобедренной), треугольники (кроме равнобедренного и равностороннего) и другие.

Виды симметрии

Также обсудим некоторые виды симметрии, чтобы до конца изучить это понятие. Их разделяют так:

  1. Осевая. Осью симметрии является прямая, проходящая через центр тела. Как это? Если наложить части вокруг оси симметрии, то они будут равными. Это можно увидеть на примере сферы.
  2. Зеркальная. Осью симметрии здесь является прямая, относительно которой тело можно отразить и получить обратное отображение. Например, крылья бабочки зеркально симметричны.
  3. Центральная. Осью симметрии является точка в центре тела, относительно которой при всех преобразованиях части тела равны при наложении.

История симметрии

Само понятие симметрии часто бывает отправной точкой в теориях и гипотезах ученых древних времен, которые были уверены в математической гармонии мироздания, а также в проявлении божественного начала. Древние греки свято верили в то, что Вселенная симметрична, потому что симметрия великолепна. Человек очень давно использовал идею симметрии в своих познаниях картины мироздания.

В V веке до нашей эры Пифагор считал сферу самой совершенной формой и думал, что Земля имеет форму сферы и таким же образом движется. Также он полагал, что Земля движется по форме какого-то "центрального огня", вокруг которого должны были вращаться 6 планет (известные на то время), Луна, Солнце и все другие звезды.

А философ Платон считал многогранники олицетворением четырех природных стихий:

  • тетраэдр - огонь, так как его вершина направлена вверх;
  • куб - земля, так как это самое устойчивое тело;
  • октаэдр - воздух, нет каких-либо объяснений;
  • икосаэдр - вода, так как тело не имеет грубых геометрических форм, углов и так далее;
  • образом всей Вселенной являлся додекаэдр.

Из-за всех этих теорий правильные многогранники называют телами Платона.

Симметрией пользовались еще зодчие Древней Греции. Все их постройки были симметричны, об этом свидетельствуют изображения древнего храма Зевса в Олимпии.

Голландский художник М. К. Эшер также прибегал к симметрии в своих картинах. В частности, мозаика из двух птиц, летящих навстречу, стала основой картины "День и ночь".

Также и наши искусствоведы не пренебрегали правилами симметрии, что видно на примере картины Васнецова В. М. "Богатыри".

Что уж там говорить, симметрия - ключевое понятие для всех деятелей искусства на протяжении многих веков, но в XX веке ее смысл оценили также все деятели точных наук. Точным свидетельством являются физические и космологические теории, например, теория относительности, теория струн, абсолютно вся квантовая механика. Со времен Древнего Вавилона и, заканчивая передовыми открытиями современной науки, прослеживаются пути изучения симметрии и открытия ее основных законов.

Симметрия геометрических фигур и тел

Рассмотрим внимательнее геометрические тела. Например, осью симметрии параболы является прямая, проходящая через ее вершину и рассекающая данное тело пополам. У этой фигуры имеется одна единственная ось.

А с геометрическими фигурами дело обстоит иначе. Ось симметрии прямоугольника - также прямая, но их несколько. Можно провести ось параллельно отрезкам ширины, а можно - длины. Но не все так просто. Вот прямая не имеет осей симметрии, так как ее конец не определен. Могла существовать только центральная симметрия, но, соответственно, и таковой не будет.

Следует также знать то, что некоторые тела имеют множество осей симметрии. Об этом догадаться несложно. Даже не нужно говорить о том, сколько осей симметрии имеет окружность. Любая прямая, проходящая через центр окружности, является таковой и этих прямых - бесконечное множество.

У некоторые четырехугольников может быть две оси симметрии. Но вторые должны быть перпендикулярны. Это происходит в случае с ромбом и прямоугольником. В первом оси симметрии - диагонали, а во втором - средние линии. Множество таковых осей только у квадрата.

Симметрия в природе

Природа поражает множеством примеров симметрии. Даже наше человеческое тело устроено симметрично. Два глаза, два уха, нос и рот расположены симметрично относительно центральной оси лица. Руки, ноги и все тело в общем устроено симметрично оси, проходящей через середину нашего тела.

А сколько примеров окружает нас постоянно! Это цветы, листья, лепестки, овощи и фрукты, животные и даже соты пчел имеют ярко выраженную геометрическую форму и симметрию. Вся природа устроена упорядоченно, всему есть свое место, что еще раз подтверждает совершенство законов природы, в которых симметрия - основное условие.

Вывод

Нас постоянно окружают какие-либо явления и предметы, например, радуга, капля, цветы, лепестки и так далее. Их симметрия - очевидна, в какой-то степени она обусловлена гравитацией. Часто в природе под понятием "симметрия" понимают регулярную смену дня и ночи, времен года и так далее.

Подобные свойства наблюдаются везде, где есть порядок и равенство. Также и сами законы природы - астрономические, химические, биологические и даже генетические подчинены определенным принципам симметрии, так как имеют совершенную системность, а значит, сбалансированность имеет всеохватывающий масштаб. Следовательно, осевая симметрия - один из основополагающих законов мироздания в целом.

fb.ru

Ось симметрии - это... Что такое Ось симметрии?

 Ось симметрии

Осевая симметрия — тип симметрии, имеющий два несколько отличающихся определения:

  • Отражательная симметрия. В математике (точнее, евклидовой геометрии) осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точек является прямая, называемая осью симметрии. Например, плоская фигура прямоугольник в пространстве осесимметрична и имеет 3 оси симметрии (две — в плоскости фигуры), если это не квадрат.
  • Вращательная симметрия. В естественных науках под осевой симметрией понимают вращательную симметрию (другие термины — радиальная, аксиальная, лучевая симметрии) относительно поворотов вокруг прямой. При этом тело (фигуру, задачу, организм) называют осесимметричными, если они переходят в себя при любом (например, малом) повороте вокруг этой прямой. В этом случае, прямоугольник не будет осесимметричным телом, но конус будет.

Применительно к плоскости эти оба вида симметрии совпадают (считаем, что ось тоже принадлежит этой плоскости).

Иногда вводят также (осевую) симметрию некоторого порядка:

  • Осевая симметрия n-го порядка — симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси. Описывается группой Zn.
    • Тогда симметрия в первом смысле (см. выше) является осевой симметрией второго порядка.

Wikimedia Foundation. 2010.

  • Ось ординат
  • Ось эклиптики

Смотреть что такое "Ось симметрии" в других словарях:

  • ОСЬ СИММЕТРИИ — в кристаллографии прямая линия, при повороте вокруг которой на определенный угол симметричная фигура займет в пространстве то же положение, которое она занимала до поворота, но на место одних ее частей переместятся др. такие же части. Наименьший… …   Геологическая энциклопедия

  • ось симметрии — Прямая, при повороте вокруг которой на некоторый угол кристалл или узлы кристаллической решетки совмещаются сами с собой. [http://metaltrade.ru/abc/a.htm] Тематики металлургия в целом EN axis of symmetry …   Справочник технического переводчика

  • ось симметрии — 3.33 ось симметрии: Воображаемая линия, проходящая через бриллиант, на равном расстоянии от которой в противоположных направлениях находятся одинаковые элементы огранки бриллианта. Источник: ГОСТ Р 52913 2008: Бриллианты. Классификация.… …   Словарь-справочник терминов нормативно-технической документации

  • ось симметрии — simetrijos ašis statusas T sritis Standartizacija ir metrologija apibrėžtis Ašis, apie kurią sukamos figūros simetrijos taškai sutampa. atitikmenys: angl. symmetry axis vok. Symmetrieachse, f rus. ось симметрии, f pranc. axe de répétition, m; axe …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • ось симметрии — simetrijos ašis statusas T sritis chemija apibrėžtis Ašis, apie kurią sukamos figūros simetrijos taškai sutampa. atitikmenys: angl. symmetry axis rus. ось симметрии ryšiai: sinonimas – inversijos ašis …   Chemijos terminų aiškinamasis žodynas

  • ось симметрии — simetrijos ašis statusas T sritis fizika atitikmenys: angl. axis of symmetry; symmetry axis vok. Symmetrieachse, f rus. ось симметрии, f pranc. axe de symétrie, m …   Fizikos terminų žodynas

  • ось симметрии — [axis of symmetry] прямая, при повороте вокруг которой на некоторый ∠α кристалл или узлы кристаллической решетки совмещаются сами с собой; Смотри также: Ось ось текстуры ось легкого намагничивания гидростатическая ось …   Энциклопедический словарь по металлургии

  • ОСЬ СИММЕТРИИ ЗЕРКАЛЬНО-ПОВОРОТНАЯ — элемент симметрии, применяемый некоторыми кристаллографами вместо инверсионных осей; это совокуп. оси и перпендикулярной к ней плоскости симметрии, действующих совместно. Все возможные в к лах О. с. з. п. (обозн. через Л) соответствуют известным… …   Геологическая энциклопедия

  • ОСЬ СИММЕТРИИ ГЛАВНАЯ — ось симметрии высшего порядка (L3, L4, L6) в средних сингониях. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 …   Геологическая энциклопедия

  • ОСЬ СИММЕТРИИ ПОЛЯРНАЯ — ось симметрии с разными концами, соединяющая разл. элементы огранения кристалла. Свойства по противоположным направлениям таких осей различны. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 …   Геологическая энциклопедия

dic.academic.ru

Понятие о симметрии. Элементы симметрии

«Симметрия» в переводе с греческого означает «соразмерность» (повторяемость). Симметричные тела и предметы состоят из равнозначных, правильно повторяющихся в пространстве частей. Особенно разнообразна симметрия кристаллов. Различные кристаллы отличаются большей или меньшей симметричностью. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.

По более точному определению симметрия – это закономерная повторяемость элементов (или частей) фигуры или какого-либо тела, при которой фигура совмещается сама с собой при некоторых преобразованиях (вращение вокруг оси, отражение в плоскости). Подавляющее большинство кристаллов обладает симметрией.

Понятие симметрии включает в себя составные части – элементы симметрии. Сюда относятся плоскость симметрии, ось симметрии, центр симметрии, или центр инверсии.

Плоскость симметрии

Плоскость симметрии делит кристалл на две зеркально равные части. Обозначается она буквой Р. Части, на которые плоскость симметрии рассекает многогранник, относятся одна к другой, как предмет к своему изображению в зеркале разные кристаллы имеют различное количество плоскостей симметрии, которое ставится перед буквой Р. Наибольшее количество таких плоскостей у природных кристаллов – девять 9Р. В кристалле серы насчитывается 3Р, а у гипса только одна. Значит, в одном кристалле может быть несколько плоскостей симметрии. В некоторых кристаллах плоскость симметрии отсутствует.

Относительно элементов ограничения плоскость симметрии может занимать следующее положение:

  1. проходит через ребра;
  2. лежать перпендикулярно к ребрам в их серединах;
  3. проходить через грань перпендикулярно к ней;
  4. пересекать гранные углы в их вершинах.

В кристаллах возможны следующие количества плоскостей симметрии: 9Р, 7Р, 6Р, 5Р, 4Р, 3Р, 2Р, Р, отсутствие плоскости симметрии.

Ось симметрии

Ось симметрии – воображаемая ось, при повороте вокруг которой на некоторый угол фигура совмещается сама с собой в пространстве. Она обозначается буквой L. У кристаллов при вращении вокруг оси симметрии на полный оборот одинаковые элементы ограничения (грани, ребра, углы) могут повторяться только 2, 3, 4, 6 раз. Соответственно этому оси будут называться осями симметрии второго, третьего, четвертого и шестого порядка и обозначаться: L2, L3, L4 и L6.Порядок оси определяется числом совмещений при повороте на 360⁰С.

Ось симметрии первого порядка не принимается во внимание, так как ею обладают вообще не фигуры, в том числе и несимметричные. Количество осей одного и того же порядка пишут перед буквой L: 6L6, 3L4 и т.п.

Центр симметрии

Центр симметрии – это точка внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие одинаковые элементы ограничения кристалла (грани, ребра, углы). Обозначается она буквой С. Практически присутствие центра симметрии будет сказываться в том, что каждое ребро многогранника имеет параллельное себе ребро, каждая грань – такую же параллельную себе зеркально-обратную грань. Если же в многограннике присутствуют грани, не имеющие себе параллельных, то такой многогранник не обладает центром симметрии.

Достаточно поставить многогранник гранью на стол, чтобы заметить, имеется ли сверху такая же параллельная ей зеркально-обратная грань. Конечно, на параллельность нужно проверить все типы граней.

Существует ряд простых закономерностей, по которым сочетаются друг с другом элементы симметрии. Значение этих правил облегчает их нахождение.

  1. Линия пересечения двух или нескольких плоскостей является осью симметрии. Порядок такой оси равен числу пересекающихся в ней плоскостей.
  2. L6 может присутствовать в кристалле только в единственном числе.
  3. С L6 не могут комбинироваться ни L4, ни L3, но может сочетаться L2 причем L6 и L2 должны быть перпендикулярны; в таком случае присутствует 6L2.
  4. L4 может встречаться в единственном числе или трех взаимно перпендикулярных осей.
  5. L3 может встречаться в единственном числе или с 4L3.

Степенью симметрии называется совокупность всех элементов симметрии, которыми обладает данный кристалл.

Кристалл, имеющий форму куба, обладает высокой степенью симметрии. В нем присутствуют три оси симметрии четвертого порядка (3L4), проходящие через середины граней куба, четыре оси симметрии третьего порядка (4L3), проходящие через вершины трехгранных углов, и шесть осей второго порядка (6L2), проходящих через середины ребер. В точке пересечения осей симметрии располагается центр симметрии куба (С). Кроме того, в кубе можно провести девять плоскостей симметрии (9Р). Элементы симметрии кристалла можно изобразить кристаллографической формулой.

Для куба формула имеет вид: 9P, 3L4, 4L3, 6L2, C.

Русский ученый А.В. Гадолин в 1869 г. показал, что у кристаллов возможны 32 различных сочетания элементов симметрии, составляющих классы (виды) симметрии. Таким образом, класс объединяет группу кристаллов с одинаковой степенью симметрии.

www.geolib.net

Что такое ось симметрии

Содержание

  1. Геометрическая симметрия
  2. Количество осей симметрии

Каким бы субъективным ни было понятие красоты, оно все-таки имеет некоторые общие для всех критерии. Один из таких критериев – симметрия, ведь мало кому понравится лицо, на котором глаза расположены на разном уровне. Симметрия же всегда предполагает наличие поворотной оси, именуемой также осью симметрии. В широком смысле симметрией именуется сохранение чего-либо неизменным при каких-то преобразованиях. Обладают таким свойством и некоторые геометрические фигуры.

Геометрическая симметрия

Применительно к геометрической фигуре симметрия означает, что если данную фигуру преобразовать – например, повернуть – некоторые ее свойства останутся прежними.Возможность таких преобразований различается от фигуры к фигуре. Например, круг можно сколько угодно вращать вокруг точки, расположенной в его центре, он так и останется кругом, ничто для него не изменится.Понятие симметрии можно объяснить, не прибегая к вращению. Достаточно провести через центр круга прямую и построить в любом месте фигуры перпендикулярный ей отрезок, соединяющий две точки на окружности. Точка пересечения с прямой будет делить данный отрезок на две части, которые будут равны друг другу.Иными словами, прямая разделила фигуру на две равные части. Точки частей фигуры, расположенные на прямых, перпендикулярных данной, находятся на равном расстоянии от нее. Вот эта пряма и будет называться осью симметрии. Симметрия такого рода – относительно прямой – называется осевой симметрией.

Количество осей симметрии

У разных фигур количество осей симметрии будет различным. Например, у круга и шара таких осей множество. У равностороннего треугольника осью симметрии будет перпендикуляр, опущенный на каждую из сторон, следовательно, у него три оси. У квадрата и прямоугольника можно провести четыре оси симметрии. Две из них перпендикулярны сторонам четырехугольников, а две другие являются диагоналями. А вот у равнобедренного треугольника ось симметрии только одна, располагающаяся меду равными его сторонами.Осевая симметрия встречается и в природе. Ее можно наблюдать в двух вариантах. Первый вид – радиальная симметрия, предполагающая наличие нескольких осей. Она характерна, например, для морских звезд. Более высокоразвитым организмам присуща билатеральная, или двусторонняя симметрия с единственной осью, делящей тело на две части.Человеческому телу тоже присуща билатеральная симметрия, но идеальной ее назвать нельзя. Симметрично расположены ноги, руки, глаза, легкие, но не сердце, печень или селезенка. Отклонения от билатеральной симметрии заметны даже внешне. Например, крайне редко бывает так, чтобы у человека на обеих щеках были одинаковые родинки.

completerepair.ru

Осевая симметрия.

  • Две точки А и А1 называются симметричными друг другу относительно прямой m, если прямая m перпендикулярна отрезку АА1 и проходит через его середину. Прямую m называют осью симметрии.
  • При сгибании плоскости чертежа по прямой m – оси симметрии симметричные фигуры совместятся.
  • Прямоугольник имеет две оси симметрии.
  • Квадрат имеет четыре оси симметрии.
  • Любая прямая, проходящая через центр окружности, является ее осью симметрии. Окружность имеет бесконечное множество осей симметрии.

Точки А и А1 симметричны относительно прямой m, так как прямая m перпендикулярна отрезку АА1 и проходит через его середину.

m – ось симметрии.

 

Прямоугольник ABCD имеет две оси симметрии: прямые m и l.

Если чертеж перегнуть по прямой m или по прямой l, то обе части чертежа совпадут.

 

 

Квадрат ABCD имеет четыре оси симметрии: прямые m, l,  k и  s.

Если квадрат перегнуть по какой-либо из прямых: m, l, k или s, то обе части квадрата совпадут.

 

 

 

Окружность с центром в точке О и радиусом ОА имеет бесчисленное количество осей симметрии. Это прямые:  m, m1, m2, m3 ... 

 

 

 

 

Задание. Построить точку А1, симметричную точке А(-4; 2) относительно оси Ох.

Построить точку А2, симметричную точке А(-4; 2) относительно оси Оy.

Точка А1(-4; -2) симметрична точке А(-4; 2) относительно оси Ох, так как ось Ох перпендикулярна отрезку АА1 и проходит через его середину.

У точек, симметричных относительно оси Ох абсциссы совпадают, а ординаты являются противоположными числами.

Точка А2(4; -2) симметрична точке А(-4; 2) относительно оси Оy, так как ось Оу перпендикулярна отрезку АА2 и проходит через его середину.

У точек, симметричных относительно оси Оу ординаты совпадают, а абсциссы являются противоположными числами.

 

Запись имеет метки: математика 6 класс

www.mathematics-repetition.com

Ось симметрии Википедия

Осева́я симме́три́я — тип симметрии, имеющий несколько отличающихся определений:

  • Отражательная симметрия. В евклидовой геометрии осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точек является прямая, называемая осью симметрии. Отсюда следует, что любой точке соответствует точка, находящаяся на том же расстоянии от оси симметрии, и лежащая на одной прямой с исходной точкой и их общей проекцией на ось симметрии[1][2]. Например, плоская фигура прямоугольник в пространстве осесимметрична и имеет 3 оси симметрии (две диагонали — в плоскости фигуры; если это не квадрат с двумя дополнительными осями — медиатрисами сторон), а параллелограмм общего вида имеет одну ось симметрии (проходящую через центр перпендикулярно плоскости).
  • Вращательная симметрия[3]. В естественных науках под осевой симметрией понимают вращательную симметрию[4] (другие термины — радиальная, аксиальная (англ. axial – осевой), поворотная, лучевая симметрии) относительно поворотов вокруг прямой. При этом тело (фигуру, задачу, организм) называют осесимметричными, если они переходят в себя при любом (например, малом) повороте вокруг этой прямой. В этом случае, прямоугольник не будет осесимметричным телом, но, например, конус будет.

Применительно к плоскости эти два вида симметрии совпадают (считаем, что ось тоже принадлежит этой плоскости).

В кристаллографии вводят также (осевую) симметрию некоторого порядка[5]:

  • Осевая симметрия n-го порядка — симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси. Описывается группой Zn.
    • Тогда симметрия в первом смысле (см. выше) является осевой симметрией второго порядка, а во втором — ∞-го порядка, так как поворот на любой сколь угодно малый угол приводит к совмещению фигуры с самой собой. Примеры: шар, цилиндр, конус.
    • Оси симметрии 2-го, 3-го, 4-го, 6-го и даже 5-го порядка (кристаллы с непериодическим пространственным расположением атомов (мозаика Пенроуза)) можно наблюдать на примере кристаллов.
  • Зеркально поворотная осевая симметрия n-го порядка — поворот на 360°/n и отражение в плоскости, перпендикулярной данной оси.

Оси симметрии порядка выше 2-го называются осями симметрии высшего порядка.

См. также

Примечания

Литература

Ссылки

wikiredia.ru